Astronomical Instrument Markup Language, an IML Dialect

Prepared for:

NASA Goddard Space Flight Center

by

 Century Computing, a division of AppNet, Inc.

Background

The Astronomical Instrument Markup Language (AIML - http://pioneer.gsfc.nasa.gov/public/aiml/) is a domain-specific implementation of the more generalized Instrument Markup Language (IML - http://pioneer.gsfc.nasa.gov/public/iml/). NASA Goddard Space Flight Center (GSFC) and Century Computing (www.centurycomputing.com), a division of AppNet, Inc. (www.appnet.net) are developing AIML to command and control astronomical instruments. Our software architecture combines the platform-independent processing capabilities of Java with the power of XML.

GSFC’s Instrument Remote Control (IRC) project is an ongoing effort led by the Advanced Architectures and Automations Branch (Code 588; http://aaaprod.gsfc.nasa.gov/website/WebSite.cfm). IRC supports NASA’s mission by defining an adaptive framework that provides robust interactive and distributed control and monitoring of remote instruments. IRC will eventually enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. The IRC framework will ultimately enable astronomers, instrument designers, hardware engineers, and other scientists to define onboard instruments, to control the instruments remotely, and to monitor vital instrument telemetry over an intranet or, for trusted users, possibly the Internet.

IRC is an ongoing development effort that will be making its debut as an operational solution on an actual twenty-year NASA mission. The initial effort is targeted for the SOFIA (Stratospheric Observatory for Infrared Astronomy; http://sofia.arc.nasa.gov/) project. According to the SOFIA homepage:

“NASA and the German space agency, DLR, are working together to create SOFIA – a Boeing 747-SP aircraft modified to accommodate a 2.5 meter reflecting telescope. SOFIA will be the largest airborne telescope in the world, and will make observations that are impossible for even the largest and highest of ground-based telescopes. The observatory is being developed and operated for NASA by a team of industry experts led by the Universities Space Research Association (USRA). SOFIA will be based at NASA's Ames Research Center at Moffett Federal Airfield near Mountain View, California, and is expected to begin flying in the year 2001.”

Astronomical instruments such as HAWC (High Resolution Airborne Wideband Camera), SAFIRE (Submillimeter And Far Infrared Experiment), and FORCAST (Faint Object infraRed CAmera for the SOFIA Telescope) are an integral part of these early development efforts; see the First Light Instruments page, http://www.sofia.usra.edu/observatory/instruments/first_light/tables.html. To further expand our knowledge base of astronomical instruments, the team is investigating a space-based instrument called SPIRE (Spectral and Photometric Imaging REceiver for FIRST; http://pioneer.gsfc.nasa.gov/public/spire/).

The Vision: Instrument Markup Language (IML)

The approach taken by the NASA/GSFC and AppNet IRC development team
 is to create a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer. To this end, the Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML), which has been created based on experience gained by focusing on the astronomy domain (and infrared instruments in particular). However, the key aspects of our approach to instrument description and control apply to many domains, from medical instruments (e.g., microscopes) to printing presses to machine assembly lines. The concepts behind IML apply equally well to the description and control of instruments in general.

In order to design an extensible and flexible architecture, the established goals of IML (and the IRC project) are to:

· Provide as much platform independence as possible.

· Create a system that is easy to develop, modify, maintain, and extend.
· Explicitly promote reuse by design by utilizing emerging technologies that enable reuse.

· Greatly reduce the implementation time for facility instruments (i.e., reliable, robust, state-of-the-art instruments that are easy to use by scientists other than the instrument designers).

· Clearly define the interface between hardware and software engineers.

· Facilitate multiple iterations of the instrument description during design and implementation by means of a software architecture that is readily adaptable to such changes.

· Cleanly separate implementation (representation) from description.

A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven (and to some extent generated) by the IML instrument description. The aspects of an instrument that can be described by IML include, but are certainly not limited to:

· Graphical user interfaces to control and monitor the instrument

· Command set and command formats (arguments, data types, constraints, etc.)

· Data streams (responses to commands and other telemetry from the instruments)

· Visualizations of instrument telemetry

· Support for different types of communication mechanisms

· Online help and documentation (from terse ToolTips to detailed information to user manuals)

In the case of astronomical instruments, an additional aspect is data pipeline algorithm descriptions (inputs and outputs and how the algorithms fit together).

Although at this stage in the evolution of IML it is software engineers who are writing the descriptions, the IRC team envisions actively soliciting the participation of hardware engineers. Not only are the hardware engineers the ones who best know the instrument details, but they are also the people who traditionally provide significant contributions to formal Interface Control Documents (ICDs), at least on large projects. NASA/GSFC and AppNet believe that IML documents can serve a similar role – that is, communicating the intricate details of an instrument’s operation – in a much more structured, human readable, and easily navigated way (e.g., collapsing and expanding nodes that correspond to different sections of interest). Promoting IML (or some dialect thereof) for use as an ICD will require providing hardware engineers with a reasonable development environment that includes tools that hide the XML details. By utilizing an XML editor with a sufficiently self-explanatory IML DTD, hardware engineers can be guided through the process of instrument specification by noting what elements are applicable in a certain context based on the DTD’s content model. The long-term vision includes providing an InstrumentDescription Wizard that will further hide the XML details with an interview-style interface.

Astronomical Instrument Markup Language (AIML)

The first implementation of an IML dialect is AIML. By developing our own Astronomical Instrument Markup Language, the developers have expressed an instrument's control commands and responses, data streams, message formats, communication mechanisms, and documentation in an extremely flexible, yet highly structured, XML format. Code generation and (where real-time constraints permit) runtime interpretation enable developers and hardware engineers to make frequent changes to AIML text files, which are automatically reflected in the application code.

At this point, there is no separate AIML DTD – the generic IML DTD provides all of the functionality addressed in the HAWC prototype (below). A separate AIML DTD will be created when (and if) needs are identified that are not part of the general instrument description solution. A DTD enables the XML parser to validate the input XML files, thereby guaranteeing the instrument description is complete and correct according to the content constraints the developers have imposed. The IML (or AIML) DTD will be extended to cover new instruments or to accommodate changing constraints of existing instruments, often without requiring changes to previously written instrument descriptions.

The ultimate vision of the Astronomical Instrument Markup Language design is to encompass the following functionality (most of which also apply to instruments in general):

Instrument Characteristics

filters, detectors, sensitivity, sub-components, component interdependencies, etc.

Control Capabilities (what the instrument can do)

Telemetry Descriptions

images (data collection and data reduction pipeline)

housekeeping (instrument status, health and safety)

command responses

Message Formats (e.g., API to devices)

separate formats for control commands and telemetry

Communication Mechanisms (e.g., TCP, RS232)

Metadata

Documentation

a la javadoc (template with specific style applied)

novice vs. expert levels of documentation

investigator, operator, or astronomer role-specific documentation

short descriptions – displayed in the GUI as tool tips

long descriptions – multiple paragraphs for extensive on-line help

Style and Presentation via Instrument GUI Stylesheet (IGS)

XSL for GUI components and eventually layout

if XML contains a range of values, generate a slider (scale)

if XML contains enumerated choices, generate a list or radio buttons

if XML is otherwise unconstrained, generate a text field constrained by data type

etc.

Some of these aspects (i.e., documentation and IGS) have not yet been implemented at the time of this writing. The described functionality may be modified as priorities change.

SOFIA/HAWC Prototype: How AIML Works

The HAWC instrument prototype developed for SOFIA by NASA and AppNet demonstrated a narrow-path, end-to-end implementation of a graphical user interface (GUI), which sends commands with limited argument types to an Instrument Simulator, which then delivers the data to several data pipeline algorithms for data reduction. In addition, some quick look (i.e., data pipeline) and real time displays (i.e., monitoring health/safety) have been prototyped.

A key aspect of the prototype was the instrument-specific description of acceptable commands and data outputs, information similar to what would be included in an Interface Control Document (ICD). The details of this information determined the implementation of the instrument-specific software objects. AIML (or more precisely, IML) was used to provide this instrument description.

The HAWC prototype was implemented
 entirely in Java using JDK 1.1.7. Sun’s XML Library was used to read the Instrument Description XML file. The Early Access release 1 of Sun’s XML Library provides support for SAX (Simple API for XML parsing), as well as a DOM (Document Object Model) implementation for tree traversal. At the time of this writing, Sun’s Early Access release 2 has been renamed “Java Project X”.

The NASA/AppNet architecture defines an InstrumentDescription object that encapsulates all information contained in the XML file. This minimizes the impact to the rest of the system if the details of the XML parsing or tree building change in incompatible ways (as was the case from Sun’s Early Access release 1 to EA2). Similarly, if the team replaces the XML Library with SAX and DOM support from another vendor, only the InstrumentDescription class needs to be changed.

Java objects are created corresponding to elements contained in the XML file. In the Java implementation, each XML element maps to an object called a Descriptor, which comes in many flavors. After the XML file is parsed and a DOM tree is created, the tree is traversed and the appropriate Descriptors are created. The Descriptors define the InstrumentDescription object, used to create the graphical user interface, as well as to define the other objects that are passed between the rest of the system and the Instrument Simulator.

Consider the description of the ADR (refrigeration) subsystem from the HAWC.xml file. The ADR has two TCP ports, one for commands to the instrument and one for telemetry from the subsystem. By examining the Port element, we see the port numbers differ; commands are ASCII-based, but telemetry is binary data. The HouseKeeping Command has three Arguments, none of which are optional. However, two of these are “hidden” – that is, they are not visible in the GUI. Argument RATE is specified as an integer that is constrained from 0 to 120000 (milliseconds). Since a ValidRange is supplied, the GUI will automatically include a slider (scale) component that enforces the constraint. If there had been no constraint, a text entry component would have been instantiated instead.

<Instrument id="ADR"> <!-- subsystem -->

<Port name="ADR" function="command" number="2201" type="ASCII" serverPort="false" >

 <Command name="HouseKeeping" >

<Argument name="tag" type="java.lang.String" required="true" hidden="true" />

<Argument name="Command" type="java.lang.String" required="true" hidden="true" />

<Argument name="RATE" type="java.lang.Integer" required="true" >

 <ValidRange low="0" high="120000" />

</Argument>

 </Command>

 <!-- Note the special XML decimal-like encoding for NEWLINE terminator -->

<RecordFormat name="HouseKeeping" size="-1" ordered="true" terminator="
" attributeSeparator=" ">

<Format name="tag" format="%s" size="16" ordered="true" />

<Format name="Command" format="HOUSEKEEPING" size="-1" />

<Format name="RATE" format="%s" ordered="false" header="RATE=" />

 </RecordFormat>

</Port>

<Port function="data" name="ADR" number="2200" type="BINARY" serverPort="false" >

 <Telemetry name="Status" >

<Field name="tag" type="java.lang.String" required="true" />

<Field name="Time" type="java.lang.Integer" required="true" />

<ArrayField name="Temperatures" required="true" dimensions="10">

<Field name="dataElement" type="java.lang.Float" required="true" />

</ArrayField>

<Field name="Heat Switch" type="java.lang.Integer" required="true" />

 </Telemetry>

 <RecordFormat name="Status" size="64" ordered="true" >

<Format name="tag" format="%s" size="16" ordered="true" />

<Format name="Time" format="%d" size="4" ordered="true" />

<ArrayFormat name="Temperatures" size="40" ordered="true" >

<Format name="dataElement" format="%f" size="4" ordered="true" />

</ArrayFormat>

<Format name="Heat Switch" format="%d" size="4" ordered="true" />

 </RecordFormat>

</Port>

 </Instrument>

We can also tell from the IML DTD that a Port has either one or more ordered pairs of Command and RecordFormat elements, or one or more ordered pairs of Telemetry and RecordFormat elements.

<!ELEMENT Port

((Command, RecordFormat)+ | (Telemetry, RecordFormat)+) >

Therefore, based upon the Command and RecordFormat in the above ADR subsystem description, a HouseKeeping Command sent to the ADR subsystem looks like this:

A100 HOUSEKEEPING RATE=2000<cr>

where “A100” is a semi-arbitrary tag supplied by the system.

The ADR telemetry response, named “Status”, is a binary data stream with these characteristics:

format tag: 16 bytes (filled with an ASCII tag by the system)

time: 4 byte integer

temperatures: 10 x 4 bytes floats

heat switch: 4 byte integer

total response length: 64 bytes

Note that the temperature data (the real telemetry meat) is a bit more complicated in its XML presentation than the other data. The ArrayField element tells us to expect an array of 10 floats. The Array Format element says a total of 40 bytes are needed for the array, with each float being represented as 4 bytes.

Dynamic Configuration Supports Iterative Development

While there are many advantages to the use of AIML, one of the most significant is the ability to defer some of the hardware implementation details as long as necessary during the development period. Software often needs to be developed in parallel with the hardware it is to control. Since hardware engineers may need to change various details as their subsystems are integrated, or as new hardware components with different characteristics are manufactured, it is crucial that the software architecture provide a degree of separation between the objects that represent the system and the hardware nuts-and-bolts.

AIML (and IML) enables iterative development because the instrument description is parsed at runtime – the XML elements define exactly which Descriptors (the major Java objects in the underlying architecture) are created. The attributes of the elements map to the attributes of the Descriptors, thereby defining the details of the current runtime system.

A concrete example of this is the ability to dynamically alter the graphical user interface to reflect a different hardware interface. Suppose we wanted to add a fourth Choice labeled “center” to the Beam Argument of the Nod Command of the Telescope subsystem. We would simply add this Choice to the ValidList:

<ValidList name="Beam">

 <Choice>left</Choice>

 <Choice>right</Choice>

 <Choice>switch</Choice>

 <Choice>center</Choice>
</ValidList>

When the application is next run, the GUI would display a list of four choices, including the “center” option. No Java code change or recompile is necessary.

Similarly, suppose the hardware engineer decided that he wants to make available a new Telescope Command called “FribberStatify”, with a floating point Argument in the range of –1.5 to 53.0. He would add a new Command and a corresponding RecordFormat:

<Command name="FribberStatify" >

 <Argument name="tag" type="java.lang.String" required="true" hidden="true" />

 <Argument name="Command" type="java.lang.String" required="true" hidden="true" />

 <Argument name="Fribber" type="java.lang.Float" required="true" >

 <ValidRange low="-1.5" high="53.0" />

 </Argument>

</Command>

<RecordFormat name="FribberStatify " size="-1" ordered="true" terminator="
"

 attributeSeparator=" ">

 <Format name="tag" format="%s" size="16" ordered="true" />

 <Format name="Command" format="FRIBBER" size="-1" ordered="true" />

 <Format name="Fribber" format="%.1f " size="-1" ordered="false" header="FRIBBER=" />
 </RecordFormat>

Simply by adding this to the XML file, the next time the application is run, the new Command would appear in the GUI (e.g., the Telescope panel). Once again, no new code would be necessary since the Descriptors are created dynamically based on the elements found in the XML file.

Next Steps

Note: The directions indicated in this section are tentative plans outlined by the NASA/GSFC and AppNet team; these plans are highly subject to change.

In order to improve the model and further generalize the language, the IRC team intends to apply our techniques to a larger body of instruments, initially from SOFIA, but ultimately from different observatories.

We have identified the need to construct another language, tentatively called Pipeline Algorithm Markup Language (PAML), which might be astronomy-specific. PAML is intended to make algorithms easier to develop and to integrate with the current Java architecture, yet still maintain a degree of separation. Uses of PAML include the description of algorithm inputs and outputs, as well as the connecting of pipeline steps.

Efforts to customize the GUI are planned, including developing an Instrument GUI Stylesheet (IGS) based on XSL, or perhaps using IBM XML Beans technology to describe a GUI via markup. Using XSL to produce role-specific documentation also has been identified as a useful possibility.

In terms of technology, NASA and AppNet developers are keeping close tabs on a number of new XML offerings. Especially of interest is freeware from IBM alphaWorks group (http://www.alphaWorks.ibm.com/Home/) such as XML Beans, LotusXSL, Bean Markup Language, and XML Productivity Kit for Java, as well as JavaSoft’s Java Project X (http://developer.javasoft.com/developer/earlyAccess/xml/index.html).

Science Data Life Cycle

The SOFIA project scientists and engineers recognize the need for providing end-to-end integration of services. They describe the collection of astronomical data as the “science data life cycle”, which consists of a number of processes:

· describing the scientist's initial concept and science goals

· identifying appropriate instruments from a database that spans multiple observatories

· locating available instruments

· planning an observation (if airborne, this includes a flight plan)

· collecting the raw data, with appropriate housekeeping metadata

· performing quick-look visualizations to verify observation data is valid

· connecting data reduction algorithms

· reducing the data

· selecting post-flight visualizations of the data

· defining relevant metadata

· archiving the data

· indexing the metadata

· retrieving data based on searching the metadata

· preparing documents for publication

A SOFIA subgroup, which includes members from the NASA/Goddard and AppNet team, plans to demonstrate the feasibility of XML-based solutions in many aspects of the science data life cycle, such as observation planning, data pipeline and analysis, data archiving, and so forth. It is possible that some degree of synergy may ensue by combining our efforts with those of Damien Guillaume (AML) for image archive and retrieval, and with the scientists from the Gemini Observatory for observation proposals.

For Further Information

Note: AIML is a very new project, barely four months old at the time of

writing. All of the specific information presented in this section is very subject to

change, and additional functionality will be added in the near future.

Please visit the AIML site (http://pioneer.gsfc.nasa.gov/public/aiml/) for the latest information.
Readers interested in more information about IML, AIML, or IRC may contact Troy Ames of NASA/GSFC (Troy.J.Ames@gsfc.nasa.gov) or Lisa Koons of AppNet, Inc. (lkoons@CenturyComputing.com), or visit the web pages listed throughout this section. Those interested in SOFIA or HAWC should contact Sean Casey (scasey@mail.arc.nasa.gov).

See also http://pioneer.gsfc.nasa.gov/public/xml/ for links to all known projects that are using XML for astronomy. There is also a low-volume mailing list that interested scientists and programmers can join to keep informed about XML for astronomy efforts.

� NASA/Goddard Space Flight Center: Troy Ames, Dr. Richard Shafer, and Carl Hostetter. Century Computing Division of AppNet, Inc.: Lisa Koons, Craig Warsaw, Ken Sall, Melissa Hess, Chi Tran, and Mike Grossman.

� An exception is the Instrument Simulator, which runs on a Mac and is not implemented in Java.

1
AppNet, Inc.
Page 8
02/09/99

