VOLT Programmer’s Guide

	Document Number:
	1.1

	Document Issue Date
	October 16, 2003

Document Summary

	Authors
	uri.kerbel@aquilent.com , vince_pell@sesda.com

	Status
	FINAL

Document Change History Log

	Date of Change
	Summary of Change

	09/30/2002
	Initial Release.

	10/09/2002
	1.0 Release.

	10/16/2003
	1.1 Release.

	
	

1VOLT Programmer’s Guide

41
Introduction

41.1
Font Conventions

42
Setting up the VOLT project environment

42.1
Software Requirements

52.2
Additional Software Requirements for Web VOLT

52.3
VOLT Development Tree setup

52.4
Web VOLT Development Tree setup

52.5
JBuilder setup (Optional)

62.6
Installing the Java 2 Platform, Standard Edition

62.7
Installing Ant

72.8
Integrating Ant with JBuilder (Optional)

72.9
Installing Java Web Service Developer Pack 1.2 (Optional)

82.10
Installing Tomcat 4 (Web VOLT requirement)

92.11
Installing Tomcat as an NT service (Windows users only)

92.12
Installing and Configuring Apache (Optional)

102.13
Environment variable summary

113
Building and Running VOLT

113.1
Building VOLT

113.1.1
VOLT Ant targets:

113.1.2
Building VOLT with JBuilder (Optional)

123.2
Running VOLT

123.2.1
Running VOLT as an integrated client and server

133.2.2
Running the VOLT server

133.2.3
Running a VOLT client

133.3
Building Web VOLT

133.4
Deploying Web VOLT for Testing

143.5
Setting up a Web VOLT Server

143.6
Deploying Web VOLT

154
Adding a New Mission to VOLT

164.1
Letting the MissionServiceManager know about the new mission:

164.2
Creating the mediator initialization file

164.2.1
Required tags within the XML file:

174.2.2
Optional tags:

174.2.3
Currently unutilized services:

174.2.4
Utilized services:

174.2.5
Adapters

194.2.6
Providing proposal import capabilities

194.2.7
Providing proposal export capabilities

194.3
Ground Mission Search capability

205
Adding a parameter to an existing mission

205.1
Specifying the parameter

215.1.1
Defining the adapter

215.2
Creating the adapter

216
VOLT Web Service Interface

226.1
Using the WebServiceAdapter

226.1.1
Defining the WebServiceAdapter

226.1.2
Referencing the Adapter

226.2
Implementing the actual web service

236.2.1
Creating the server-side classes

236.2.2
Writing the actual code

246.2.3
Deploying the service

247
How to configure Web VOLT to run in different modes

248
Working with commands in Web VOLT

258.1
Standard commands

258.1.1
Null commands

268.1.2
Wizard Commands

278.1.3
Command classes

278.1.4
Validator classes

278.1.5
BeansBuilder classes

288.2
Initializing a bean

288.3
Referencing the bean

288.4
Sending a command

1 Introduction

The purpose of this document is to assist programmers and system administrators with the maintenance of the VOLT and Web VOLT systems. It is intended to enable the maintenance of these systems without requiring a thorough knowledge of the underlying architecture. However, it may be used in conjunction with other documentation, such as the VOLT design document, Javadocs, and source code to gain an in-depth understanding of the system and its underlying environment.

1.1 Font Conventions

This document uses different typefaces to differentiate between code and conventional English, and also to help one identify important concepts.

· Square brackets around text are used for placeholders, i.e. text that should be replaced by the relevant value. For example, [JAVA_HOME] should be replaced with the installation directory of Java, such as C:\jdk1.3
· A fixed width font is used to represent code snippets as well as class names and file paths

· Text that is bold faced is used for emphasizing important pieces of code that are directly relevant to the associated examples

2 Setting up the VOLT project environment

2.1 Software Requirements

The following is a list of software that must be installed in order to maintain the VOLT systems. Although there is a JBuilder project file that is provided for easy setup with this tool, it is not required for VOLT development. There are detailed instructions for configuring the below software tools in the upcoming sections of this document.

· Java 2 Platform, Standard Edition (J2SE) version 1.3 or higher

Website: http://java.sun.com/j2se/
· Apache Ant version 1.3 or higher

Website: http://jakarta.apache.org/ant/index.html
· Borland JBuilder version 4 or higher (Optional)

Website: http://www.borland.com/jbuilder/index.html
· Java Web Services Developer Pack 1.2 (Optional)

Website: http://java.sun.com/webservices/downloads/webservicespack.html
2.2 Additional Software Requirements for Web VOLT

The following is a list of additional software that must be installed for WebVOLT development. However, the Apache HTTP server is not required since Tomcat may be used without it. The required software identified above in section 2.1 must also be installed.

· Apache Tomcat version 4.0 or higher

Website: http://jakarta.apache.org/tomcat/index.html
· Apache HTTP Server version 1.3 or higher (Optional)

Website: http://httpd.apache.org/
2.3 VOLT Development Tree setup

At the present time, CVS is used by the VOLT development team as the source control tool. However, StarTeam and SourceSafe were previously used. For this reason, the source control repository will be referred to generically and tool specific instructions will not be provided.

1. Get the latest version of VOLT from the source control repository

2. Set the VOLT_HOME environment variable to the root directory of your VOLT tree

2.4 Web VOLT Development Tree setup

1. Get the latest version of Web VOLT from the source control repository

2. Set the WebVOLT_HOME environment variable to the root directory of your Web VOLT tree

If you are using JBuilder, WebVOLT_HOME will need to have the same path prefix as VOLT_HOME, and the directory name for VOLT_HOME must be VOLT. For example, if VOLT is installed at C:/some/directories/VOLT, then Web VOLT should be installed at C:/some/directories/WebVOLT. The reason for this is that the JBuilder project libraries used for Web VOLT are specified using relative paths, and some of them are in the [VOLT_HOME]/jars/ directory.

2.5 JBuilder setup (Optional)

There are JBuilder project files provided for both VOLT and Web VOLT in order to ease the set up of the VOLT development environment if this development tool is used. Therefore, by using these project files, there is no additional JBuilder-specific setup required for VOLT. Simply open the project files from JBuilder and you’re ready to go. The VOLT project file is located at [VOLT_HOME]/source/volt.jpr and the Web VOLT project file is located at [WebVOLT_HOME]/WebVOLT.jpr.

2.6 Installing the Java 2 Platform, Standard Edition

In order to maintain VOLT, the Java 2 Platform Standard Edition (J2SE) version 1.3 or higher must be installed. Any platform that has support for J2SE 1.3 or higher can be used for VOLT development. However, only Windows, Solaris, and Linux have been tested. The instructions below describe the installation procedures for installing J2SE:

1. Download a J2SE installer from http://java.sun.com/downloads.html
2. Follow the on screen installer instructions

3. Set the JAVA_HOME environment variable to the root directory of J2SE

2.7 Installing Ant

The Apache Ant program is used for compiling and running VOLT. Ant is a Java-based build tool that is similar to the Make program. Ant build files, unlike Make files, are written in XML. Each Ant build file contains one project and at least one (default) target. A target defines a set of tasks to be executed. For example, a compile target might compile all of the out of date source code of the project. The Ant build file for VOLT is located at VOLT_HOME]/source/build.xml. For a complete listing and description of the VOLT build file targets, go to the [VOLT_HOME]/source/ directory and execute the following:

prompt%> ant –projecthelp

To install Ant, follow the instructions below:

1. Download Ant from http://jakarta.apache.org/ant/index.html
2. Extract Ant to the location of your choice.

3. Set the ANT_HOME environment variable to the root directory of Ant

4. Add [ANT_HOME]/bin to you PATH environment variable

5. Test Ant

a. From the command-line, go to [VOLT_HOME]/source/
b. At the command prompt, execute the following:

prompt%> ant –projecthelp
The result should be a listing and description of all the VOLT targets

2.8 Integrating Ant with JBuilder (Optional)

AntRunner is an add-on module for the JBuilder development tool that allows Ant to be integrated with JBuilder. Once installed, Ant targets can be executed directly from JBuilder. Follow the instructions below to install AntRunner:

1. Download AntRunner from http://antrunner.sourceforge.net/Downloads.html
2. The downloaded zip file contains the antrunner.jar file.

· Extract this jar file to [JBuilder root]/lib/ext/
3. Modify the [JBuilder root]/bin/JBuilder.config file by adding the following:

addjars [ANT_HOME]/lib

4. Exit and then Restart JBuilder

5. Go to Tools->IDE Options
6. Select the AntRunner tab

7. Add the following as the Ant BatchFile: [ANT_HOME]/bin/ant.bat
8. Within JBuilder, open the VOLT project

9. Go to: Tools->Configure Ant

The AntNode dialog will appear

10. Set the Ant build file to: [VOLT_HOME]/source/build.xml
11. Test AntRunner

a. From JBuilder, Select Project->Run Ant for target->usage
b. Information on usage should be printed

12. To configure AntRunner for use with WebVOLT, open the WebVOLT project within JBuilder

13. Repeat steps 9, 10, and 11 replacing [VOLT_HOME] with [WebVOLT_HOME] in step 10

2.9 Installing Java Web Service Developer Pack 1.2 (Optional)

The Java Web Services Developer Pack (JWSDP) is an integrated toolkit that allows Java developers to build, test, and deploy XML applications, web services, and web applications with the latest web services technologies and standards implementations. This toolkit was used during the development of the VOLT web service interface. See Section 6 for more information on this interface. The installation of this software is only required if you are going to make changes to the existing VOLT web service interface. Please keep in mind that there are 2 ANT targets, wscompile and createWebService, that will not work if you do not have JWSDP properly installed.

1. Download JWSDP version 1.2 from: http://java.sun.com/webservices/downloads/webservicespack.html
2. Install JWSDP in the location of your choice

3. Add [JWSDP_HOME]/jaxrpc/ to your PATH environment variable.

4. Add [JWSDP_HOME]/jwsdp-shared/bin to your PATH environment variable

2.10 Installing Tomcat 4 (Web VOLT requirement)

The installation of the Apache Tomcat software is required for Web VOLT development, but it is not required for development of the Java version of VOLT. Tomcat is used as the Web VOLT Servlet Container. A Servlet Container is a Java application that runs Java Servlets and implements a particular version of the Servlet and Java Server Pages (JSP) specifications. Tomcat may run standalone, serving static web pages as well as dynamic content, or it may run as a "plug in" for a Web Server. Web VOLT requires version 2.3 of the Servlet specification and version 1.2 of the JSP specification. Tomcat 4 supports both of these specifications and is the only Servlet Container that has been tested. However, any container that implements the Servlet 2.3 and JSP 1.2 specifications should work.

1. Download Tomcat 4.0 or higher from http://jakarta.apache.org/tomcat/index.html
2. Extract the archive to the desired location

· For Windows Users, it is recommended that you download the zip file rather than the executable installer. If the executable is used, do not choose to have Tomcat installed as a service, as it will be installed without a security policy and will not work for Web VOLT.

3. Set the TOMCAT_HOME environment variable to the root directory of Tomcat

4. Set the WebVOLT_DEPLOY environment variable to the deployment location of the Web VOLT web application

5. Modify the [TOMCAT_HOME]/conf/catalina.policy file by adding the following at the end:

grant

{

permission java.security.AllPermission;

};
6. Modify the [TOMCAT_HOME]/conf/server.xml file by adding the following after the example Context:

<Context path=”/volt” docBase=”[WebVOLT_DEPLOY]” debug=”0” reloadable=”true”>

<Logger className=”org.apache.catalina.logger.FileLogger” prefix=”volt_log.” suffix=”.txt” timestamp=”true/>

</Context>
· Find the following line in the server.xml file Define an AJP 1.3 Connector on port 8009 and uncomment the connector specification. This allows Tomcat to be used in conjunction with Apache.

2.11 Installing Tomcat as an NT service (Windows users only)

The Web VOLT Ant build file assumes that Tomcat is installed as a service. In order to install services on Windows, you must have Administrative privileges to the workstation you are installing it on. If Tomcat is not installed as a service, the start target in the build file will not work and you will have to start Tomcat manually from the command-line. Follow the steps below to install Tomcat as an NT Service:

1. Retrieve the file WebVoltTools/TomcatService.bat from source control

2. Execute the file from the command-line as follows:

prompt%> TomcatService.bat –install
3. To start the installed Tomcat service, execute the following from the command-line:

prompt%> net start tomcat
4. To stop the service, execute the following:
prompt%> net stop tomcat
2.12 Installing and Configuring Apache (Optional)

The Apache HTTP Server is an open-source web server available on UNIX and Windows operating systems. To use Apache in conjunction with Tomcat, a Connector is required. Connectors provide the communication mechanism that allows Tomcat to be seamlessly integrated with Apache. The JK Connector is the only one that has been tested with Web VOLT and is the recommended software to use, however, other connectors are also available. When Apache and Tomcat are used together, Apache handles the static content and delegates the dynamic content to Tomcat. Web VOLT has only been fully tested with Apache version 1.3, so this version or higher is the recommended web server to use. Follow the instructions below to install Apache:

1. Download Apache HTTP Server from http://www.apache.org/dist/httpd/
2. Install Apache in the location of your choice

3. For Windows users only:

· When entering server information, choose Run as service for all users. Apache will be installed as a Windows service.

4. Download the JK Connector. Binaries for mod_jk are available for several platforms in the same area as the Tomcat Binary Release. For more information on the JK Connector see: http://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/jk.html
5. Retrieve the file tomcat4.0-volt.conf from source control under the WebVOLT/source/config/ directory.
6. Copy the tomcat4.0-volt.conf file to the [Apache Dir]/conf/ directory

7. Retrieve the file workers.properties from source control under the WebVOLT/source/config/ directory.

8. Copy the workers.properties file to the [Apache Dir]/conf/ directory

9. Customize the properties file workers.properties by updating the following items:

a. Update the workers.tomcat_home property to point to [TOMCAT_HOME]

b. Update the workers.java_home property to point to [JAVA_HOME]

10. Modify the [Apache Dir]/conf/httpd.conf file by adding the following line at the end:

Include conf/tomcat4.0-volt.conf

· Be sure to use forward slashes (instead of back slashes) on all platforms, including Windows

2.13 Environment variable summary

· ANT_HOME – the root directory of Apache Ant

· JAVA_HOME – the root directory of J2SE

· VOLT_HOME – the root directory of your VOLT tree

Additional Web VOLT environment variables

· TOMCAT_HOME – the root directory of Tomcat

· WebVOLT_HOME – the root directory of your Web VOLT tree

· WebVOLT_DEPLOY – the deployment directory of Web VOLT
3 Building and Running VOLT

3.1 Building VOLT

As mentioned in section 2.7, the Ant tool is used to build the VOLT software. Refer to section 2.7 for more information on installing and configuring Ant. To build the VOLT software, follow the instructions below:

1. From the command-line, go to: [VOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant compileAll
· This will build all of the outdated VOLT classes and perform any necessary Remote Method Invocation (RMI) compiling, which entails the usage of the rmic compiler to create stubs for all remote objects. RMI uses a remote object's stub class as a proxy in clients in order for the client to communicate with the remote objects.

3.1.1 VOLT Ant targets:

The following is a list of the Ant targets that are used for compiling VOLT.

· all – Removes all compiled source, including RMI files, and then recompiles the source including RMI files

· clean – Removes all compiled source, with the exception of RMI files

· cleanAll – Removes all compiled source, including RMI files

· cleanCompile – Removes all compiled source, with the exception of RMI files, and then recompiles

· compile – Compiles all out of date source code, with the exception of RMI files

· compileAll – Compiles all outdated source code, including RMI files

· rmi – Compiles outdated RMI files only

3.1.2 Building VOLT with JBuilder (Optional)

JBuilder has been used for development by most of the VOLT development team. However, it is not required to perform VOLT development, since all compilation can be done using the Ant tool. The VOLT JBuilder project file is located at [VOLT_HOME]/source/volt.jpr. Follow the instructions below to build VOLT using JBuilder:

1. Open JBuilder

2. Go to File->Open Project…
· A File Chooser dialog will appear

3. Select [VOLT_HOME]/source/volt.jpr and press OK
· The VOLT tree will appear in JBuilder

4. Select Project->Make Project “volt.jpr”
· The entire VOLT project will be compiled, except for RMI classes. Ant must be used to compile RMI classes.

5. Compile the RMI file using Ant

a. From JBuilder, Select Project->Run Ant for target->rmi
· AntRunner must be configured before this can be done

b. If you would prefer to run this from the command line, follow the instructions below:

i. From the command-line, go to: [VOLT_HOME]/source
ii. At the command prompt, execute the following:

prompt%> ant rmi

3.2 Running VOLT

The VOLT software was developed as a client/server application. The server, which is responsible for retrieving schedulability information, can handle requests from multiple VOLT clients at the same time. Clients communicate with the server via RMI. Therefore, the VOLT client and server may be run independently of each other, or they may be run as an integrated application. If run as an integrated application, RMI is not used. The following subsections describe the processes for running VOLT in these different modes:

3.2.1 Running VOLT as an integrated client and server

1. From the command-line, go to: [VOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant run
3.2.2 Running the VOLT server

1. From the command-line, go to: [VOLT_HOME]/source
2. At the command prompt, execute the following:
prompt%> ant runServer
3.2.3 Running a VOLT client

1. From the command-line, go to: [VOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant runClientRemote
· A dialog box will appear

3. Enter the fully qualified host name where the VOLT server is running

4. Enter the port that the server is running on

3.3 Building Web VOLT

The Ant tool is used to build Web VOLT, as it is also used for VOLT. See section 2.7 for more information on installing and configuring Ant. To build Web VOLT, follow the instructions below:

1. From the command-line, go to: [WebVOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant compile
· This will build all the outdated Web VOLT classes

3.4 Deploying Web VOLT for Testing

The Web VOLT project has been set up to make development and testing relatively easy. When code changes need to be tested, Ant can be used to copy the changed files to the appropriate directories and restart the Application Server (Tomcat). Follow the instructions below to deploy Web VOLT for testing:

1. From the command-line, go to: [WebVOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant deploy
· The deploy target depends on the compile target. Thus, any outdated classes will be re-compiled before the files are copied.

3.5 Setting up a Web VOLT Server

Web VOLT is a web application that requires a Servlet Container. Any container that supports version 2.3 of the Servlet specification and version 1.2 of the Java Server Pages specification should work. However, the only Container that has been tested for Web VOLT is Tomcat version 4.0. Follow the instructions below to set up a Web VOLT server using the Tomcat Servlet Container.

1. Install J2SE version 1.3 or higher. See section 2.6 for more information.

· On UNIX, version 1.4 should be used. The reason for this is that Web VOLT uses an ImageServlet, which renders images to an off-screen buffer and then encodes the images and sends them to the browser. Even when rendering to an off-screen image rather than the actual screen, earlier versions of Java still require a connection to an X server. In version 1.4, a headless mode has been added to allow off-screen rendering when not connected to an X server. To enable headless mode, the java.awt.headless property should be set to true when starting the JVM.

2. Install Tomcat. Refer to section 2.10 for these instructions.

a. In step 6 of section 2.10, the Context specification is not needed since Web VOLT will be deployed via a war file. War file creation will be discussed in section 3.6. The second portion of step 6 is required if Apache is being used.
b. Set the CATALINA_OPTS environment variable to:
-Djava.awt.headless=true -Xms128m -Xmx256m

3. Install Tomcat as an NT service. (Windows users only) See section 2.11 for more information.

4. Install Apache Web Server. See section 2.12 for more information.

3.6 Deploying Web VOLT

The easiest way to deploy a web application is to package it in a Web Application Archive (WAR) file, which can be created with the use of Ant. A WAR file has a specific directory structure. The top-level directory is the document root of the application. The document root is where JSP pages, client-side classes and archives, and static Web resources are stored. Below the root, there is a subdirectory call WEB-INF, which contains the web.xml file, tag library descriptor files, a classes directory for the web application server-side classes, and a lib directory for additional server-side jar files.

1. From the command-line, go to: [WebVOLT_HOME]/source
2. At the command prompt, execute the following:

prompt%> ant war

· If you are deploying to a UNIX server, execute the following instead:

prompt%> ant unixWar
· A WAR file will be created in [WebVOLT_HOME]/source/ directory.

3. Put the WAR file in the [TOMCAT_HOME]/webapps/ directory on the server.

4. Restart Tomcat.

5. Restart Apache (First time only)

4 Adding a New Mission to VOLT

One of the key requirements for VOLT was to ensure that the architecture supported extensibility to accommodate new missions. This was achieved through the use of Mediators, which were used to establish an interface and communicate with a planning facility for the retrieval of schedulability related data.

In order to add a new mission to the system, it is important to understand the key underlying components that are involved:

· MissionServiceManager - responsible for retrieving information related to observations and their schedulability from individual observatories and other facilities. A MissionServiceManager object instantiates and maintains a list of MissionMediator objects based upon the information provided in the static VOLT resource files. Each one of these objects interfaces with a unique mission supported by the VOLT system.

· MissionMediator - responsible for knowing all of the services related to a specific mission and mapping those services to specific adapters. At initialization time, it instantiates the corresponding Mission object from externally defined data (resource files). When a MissionMediator receives service information requests, it forwards those requests to the appropriate adapters.

· Adapter - an interface, which provides the Application Programming Interface (API) for all classes that are responsible for retrieving a service’s schedulability information from a non-VOLT facility, or any other designated source. Classes of this type are expected to convert any retrieved schedulability (or other required) information to the VOLT specific format before passing that information on.

In response to requests from several of our space-based mission customers, a generic Ground Mission module was added to VOLT. The above instructions apply primarily to the addition of space-based missions. The Ground Mission module was designed to allow the user to add any ground telescope into their VOLT environment and determine its schedulability, providing they know its latitude and longitude. A user interface was developed to allow the user to add a new Ground Mission by simply specifying its latitude and longitude. Most, if not all, Ground Missions are supported without the need to add a new MissionMediator for that mission.

4.1 Letting the MissionServiceManager know about the new mission:

In order to enable the MissionServiceManager to instantiate a MissionMediator associated with the new mission, the mediator information must be added to MissionServiceManager.xml (this file is located under the datafiles structure in [VOLT_HOME]\classes\datafiles\volt\)

The only properties that are unique to each mission are the ‘Name’ and the ‘InitFile’. Below is the HST mediator specification, which can be used as an example when specifying the new mission:

<Mediator Type="structure">

 <Name Type="scalar">HSTMediator</Name>

 <Class Type="scalar">gov.nasa.gsfc.volt.gwserver.MissionMediator</Class>

 <Mission Type="structure">

 <Name Type="scalar">HST</Name>

 <Class Type="scalar">gov.nasa.gsfc.volt.mission.Mission</Class>

 <InitFile Type ="scalar">/datafiles/volt/HSTMission.xml</InitFile>

 </Mission>

</Mediator>

4.2 Creating the mediator initialization file

The next step is to create the XML file containing the mission-specific information. The file is named [MISSION_NAME]Mission.xml file, e.g. HSTMission.xml (this file is located under the datafiles structure in [VOLT_HOME]\classes\datafiles\volt\)

4.2.1 Required tags within the XML file:

· Name – the abbreviated name of the Observatory

· Description – the full name of the observatory

· CycleStart – the start of the current scheduling cycle

· CycleEnd - the end of the current scheduling cycle

· ObsSynonym – the synonym to be used when listing observations

4.2.2 Optional tags:

· Instrument – specify the instruments that are associated with this mission

· Required constraints – any constraints that are required by the system

· Supported constraints – any constraints that can be supported by the system

· ProposalConverter – the class used to parse an associated proposal

· ProposalExporter – the class used to export to the relevant proposal format

4.2.3 Currently unutilized services:

· Proposal – specifies how to retrieve proposals from an external source

· Short/Long term schedule – specifies how to obtain short/long term schedule data from an external source

4.2.4 Utilized services:

· Timeline – specifies a mission parameter, which represents schedulability data. The details are as follows:

· Name – always specified as ‘Timeline’

· Type – the type of timeline, e.g. Orient

· Details – the timeline’s descriptive name, e.g. Roll

· RawDataSupport – specifies whether a sub timeline representing raw (unnormalized) data is supported or not

· AdapterRef – the name of the associated adapter (see ‘Adapter Specification’ below)

· Required – specifies whether this service is required or not

· AssociatedConstraint – specifies the name of the associated constraint (e.g. Orientation) if there is one

4.2.5 Adapters

Adapters are the objects that perform data conversion from a mission-specific format to the VOLT format. Each adapter is referenced by a name (this name is used when associating individual timelines within the XML file with a specific adapter) and must have a specified class, which is used to instantiate the adapter itself. Any other associated static parameters can also be specified in this file, within the adapter definition.

Below is the definition of the HST related SPIKE adapter:

<AdapterItem Type="structure">

 <Name Type="scalar">SPIKE</Name>

 <Adapter Type="structure">

 <Class type="scalar">gov.nasa.gsfc.volt.gwserver.JSpikeAdapter</Class>

 <SpikeServer>tdifsun1.gsfc.nasa.gov</SpikeServer>

 </Adapter>

</AdapterItem>

4.2.5.1 Creating the adapter class:

The adapters are placed within the gwserver package and implement the Adapter interface. The two methods that are implemented in concrete adapters are:

· public String getAdapterType() – this method returns the type of the adapter. Essentially, this is a string identifying the adapter.

· public Timeline getTimelineByType(TimelineRequest request) – specifies how a schedulability timeline of the specified type is retrieved for the given information. The TimelineRequest that is passed in as an argument contains all of the information that is needed to retrieve a schedulability timeline from the VOLT server, i.e. the observation; the constraints; the time range and the requested timeline type.
There are several generic implementations of the Adapter interface in VOLT, such as:

· WebServiceAdapter : can be used by any service that implements the VOLT web service interface. This interface defines a standard language neutral mechanism for adding new services to VOLT. See section 6 for more information on the VOLT web service interface.
· CgiAdapter : can be used by any service that is interested in retrieving schedulability information from a web tool through a CGI interface.

· FileAdapter: can be used by any service that is interested in retrieving schedulability information that has been saved to a file.

· JSpikeAdapter : can be used to obtain schedulability information for any service that needs to obtain its information from a Spike server. It communicates through RMI to a remote JSpikeServer whose task it is to perform the actual communication with Spike.

· GenericSimulatorAdapter: can be used to generate simulated, semi-realistic schedulability data for a mission service.
4.2.6 Providing proposal import capabilities

In order to enable users to import proposals in the appropriate format, it is necessary to create a class, which implements ProposalConverter. This object is responsible for converting a proposal from an external format to the required VOLT format. The converter utilizes a parser to provide the actual text parsing functionality. All parsers implement the ProposalParser interface.

4.2.7 Providing proposal export capabilities

VOLT provides the ability to partially export observations/constraints to an observatory specific proposal format. The exported text can be pasted into a more detailed proposal containing additional comments and other related information, ultimately resulting in a full proposal specification of a VOLT scenario. In order to provide new export capabilities, it is necessary to create a new ProposalExporter and to add it to the ProposalExporterFactory API.

4.3 Ground Mission Search capability

As mentioned in Section 4, VOLT provides support for coordinating observations with virtually any Ground Mission, providing the telescope’s latitude and longitude are known. In order to assist users with locating Ground Mission coordinates, VOLT offers a built-in Ground Mission search capability. This allows the user to type in the name or acronym of a given Ground Mission to determine its latitude and longitude. The Ground Mission Module searches for this data within the GroundMissions.dat datafile. Any mission that has an entry in this file may be searched. A large percentage of the world-wide ground based observatories are represented in this file. To add a new entry, follow these steps:

1. Open the file: [VOLT_HOME]/classes/datafiles/GroundMissions.dat

2. Add your new entry:

Your entry should be similar to the example below. Latitude and longitude may be specified as either a floating point number or as hours:minutes:seconds

observatory = "kpno"

name = "Kitt Peak National Observatory"

longitude = 111:36.0

latitude = 31:57.8

altitude = 2120.

timezone = 7
3. Restart VOLT. Your entry should now be searchable

5 Adding a parameter to an existing mission

In order to add a new parameter to an existing mission, it is necessary to edit the relevant [MISSION_NAME]Mission.xml file (this file is located under the datafiles structure in [VOLT_HOME]\classes\datafiles\volt\).

5.1 Specifying the parameter

Add a new Service to the file with the following properties:

· Name – always specified as ‘Timeline’

· Type – the type of timeline, e.g. Orient

· Details – the timeline’s descriptive name, e.g. Roll

RawDataSupport – specifies whether the service can provide raw, non-normalized data as well as normalized ones.

· AdapterRef – the name of the associated adapter (see ‘Adapter Specification’ below)

· Required – specifies whether this service is required or not

· AssociatedConstraints – specifies the name of the associated constraint (e.g. Orientation) if there is one

· SubServiceSupport – specifies whether the service can provide information about its sub services

Below is an example of the SunExclusion parameter as specified for Chandra:

<Service Type="structure">

 <Name Type="scalar">Timeline</Name>

 <Type Type="scalar">SunExclusion</Type>

 <Details Type="scalar">Sun Exclusion</Details>

 <RawDataSupport type="scalar">true</RawDataSupport>

 <AdapterRef Type="scalar">ChandraVisibility</AdapterRef>

 <Required Type="scalar">true</Required>

 <AssociatedConstraint Type="scalar">Undefined</AssociatedConstraint>

</Service>

5.1.1 Defining the adapter

Defining a new adapter is only necessary if an existing adapter cannot be utilized. If a new adapter is to be used in order to retrieve the schedulability data, it must also be defined in [MISSION_NAME]Mission.xml file with the following properties:

· Name – this is the name used to reference the adapter within the XML document, i.e., when associating the adapter with a service

· Class – the Java class representing the adapter

Below is the definition of the HST related SPIKE adapter:

<AdapterItem Type="structure">

 <Name Type="scalar">SPIKE</Name>

 <Adapter Type="structure">

 <Class type="scalar">gov.nasa.gsfc.volt.gwserver.JSpikeAdapter</Class>

 <SpikeServer>tdifsun1.gsfc.nasa.gov</SpikeServer>

 </Adapter>

</AdapterItem>

5.2 Creating the adapter

Please see section 4.2.5.1, which describes the steps required to create a new adapter.

6 VOLT Web Service Interface

The Volt web services interface defines a standard language which provides a neutral mechanism for adding new services to VOLT. To achieve this, Simple Object Access Protocol (SOAP) is used. SOAP is an XML based protocol for exchanging information in a decentralized, distributed environment. SOAP defines a standard way to map Remote Procedure Calls (RPC) to SOAP messages and vice versa. Consequently, even though VOLT is written in Java, services can be written in any language that offers SOAP support.

As mentioned in Section 4.2.5, adapters are the objects that perform data conversion from a mission-specific format to the VOLT format. The WebServiceAdapter is a special adapter that has the ability to communicate with services that implement the VOLT web service interface. Recall that adapters are specific to a given service that a mission provides. Therefore, the WebServiceAdapter can be used when adding entirely new missions or when simply adding another parameter to an existing mission. See Section 4 for more details on adding a new mission and Section 5 for adding a parameter to an existing mission.

6.1 Using the WebServiceAdapter

The WebServiceAdapter is used exactly the same as any other adapter. First, it must be defined within the mission xml file, and then it can be referenced within that same mission xml file.

6.1.1 Defining the WebServiceAdapter

Below is a sample definition of the WebServiceAdapter. The key thing to note is that the url should point to the location of your web service.

<AdapterItem Type="structure">

 <Name Type="scalar">WSAdapter</Name>

 <Adapter Type="structure">

 <Class type="scalar">gov.nasa.gsfc.volt.gwserver.WebServiceAdapter</Class>

 <url>http://tdifsun1.gsfc.nasa.gov/voltservice/voltWebService</url>

 </Adapter>

</AdapterItem>

6.1.2 Referencing the Adapter

Once defined, the adapter can be referenced. The example below illustrates the use of a previously defined WebServiceAdapter. It is important to recognize that the AdapterRef should be the name of the previously defined adapter.

<Service Type="structure">

 <Name Type="scalar">Timeline</Name>

 <Type Type="scalar">SunExclusion</Type>

 <Details Type="scalar">Sun Exclusion</Details>

 <RawDataSupport type="scalar">true</RawDataSupport>
 <AdapterRef Type="scalar">WSAdapter</AdapterRef>

 <Required Type="scalar">true</Required>

 <AssociatedConstraint Type="scalar">Undefined</AssociatedConstraint>

</Service>

6.2 Implementing the actual web service

A VOLT web service can be implemented using any language that provides SOAP support. A Web Service Description Language (WSDL) file describes the VOLT web service. This file, [VOLT_HOME]\webservice\config\VoltService.wsdl, is used to produce the server-side classes that are required to implement the web service. The client-side classes have already been implemented within the WebServiceAdapter and can be used as is.

6.2.1 Creating the server-side classes

As mentioned in Section 6, any SOAP toolkit may be used to implement your web service. However, the Java Web Services Developer Pack version 1.2 (JWSDP) is the toolkit that was tested for the Volt web service. Each toolkit should have a utility used to generate the server-side classes. Using JWSDP, the wscompile tool can be used for that purpose. The classes listed below are specified in the WSDL file and will always be generated no matter what toolkit you use. These five classes are the only classes that you will need to work with when implementing your web service. Additional support classes will more than likely be generated, but you should not need to modify them.

· TimeLineService – This class defines the interface that you will have to implement. There is only one method, getTimeLine(TimeLineRequest): TimeLineInfo.

· TimeLineRequest – This class defines the requested timeline.

· TimeLineInfo – This class essentially defines a timeline. It contains all the data that is necessary for the WebServiceAdapter to create a VOLT Timeline
· Interval – This class defines a time interval with a start and stop time. Intervals also have a value. In VOLT, this value represents the quality of the interval.

· AdditionalInfo – This class is used with the TimeLineRequest to represent additional constraints for the requested timeline to fulfill.

6.2.2 Writing the actual code

There is a minimal amount of coding that is required to create a VOLT web service. As mentioned earlier, any programming language can be used that provides SOAP support. An example can be found at VOLT_HOME]\source\gov\nasa\gsfc\volt\gwserver\GroundDataTimeLineService.java. This working example is a web service version of the VOLT Ground Data Server.

Your service must extend TimeLineService. Only one method, getTimeLine, needs to be implemented to accomplish this. The getTimeLine method takes one argument, which is a TimeLineRequest. This class defines the timeline requested by the user and should be used to determine the information to be returned. Information is returned via the TimeLineInfo class. TimeLineInfo objects contain Interval objects, which make up the schedulable regions of the timeline. The example mentioned above is relatively easy to follow and serves as a great starting point.

6.2.3 Deploying the service

The way in which your web service is deployed may be dependent on the SOAP toolkit you have chosen. JWSDP has a utility called wsdeploy, which takes your code and packages it into a WAR file. The WAR file can then be deployed on any Servlet/JSP application server.

7 How to configure Web VOLT to run in different modes

By setting the ‘applicationMode’ initialization parameter within the web.xml file, the system can determine what mode it is being run in. The ‘Planner’ mode enables all of the tool’s functionality, whereas the ‘Scientist’ mode disables certain functionality.

<context-param>

 <param-name>

 applicationMode

 </param-name>

 <param-value>

 Scientist <!-- "Scientist" or "Planner" -->

 </param-value>

</context-param>

It is important to note that there is currently no user login capability incorporated into Web VOLT. Due to this fact, it is not possible to identify clients on a per-user basis in order to establish what mode they are allowed to run in. Therefore, the current server would run in a specific mode for all users. If desired, a separate server can be configured to run in another mode in order to cater for other types of users.

8 Working with commands in Web VOLT

VOLT was originally developed using a Model-View-Controller architecture, which cleanly decouples, or separates, the presentation layer, from the rest of the application. A presentation layer generally consists of the user’s interface to a given application. This separation made developing a Web version of the tool relatively easy. The only thing that needed to be replaced was the presentation layer. Essentially, a Hypertext Markup Language (HTML) front-end was used instead of a Java GUI. To accomplish this, a generic framework was created that uses Java Servlets and Java Server Pages (JSPs) to dynamically generate the HTML. This framework is also based on the MVC design pattern.

The framework consists of a central Servlet called the Dispatcher that receives all requests from the web browser. When a request is received, the Dispatcher determines which Command should be executed. The executing Command talks to the VOLT back-end, which is where the real work takes place. After the Command has executed, the Dispatcher then determines what JSP should be sent back to the browser. All of this is completely configurable via XML.

In order to add a new command to Web VOLT, it is necessary to edit the commands.xml file (this file is located under the datafiles structure in \classes\datafiles\volt\web).

The commands.xml file contains an array of commands that the dispatcher supports. Each command is made up of the following tags:

· Name - the name of the command

· Class - the command class that this command should use

· SuccessPage - The page the command should forward to if it completes successfully

· Validator - An optional validator class specifying how the request object passed to the command should be validated

· FailPage - The page that should be returned if the command fails

· BeansBuilder- An option BeansBuilder class that can be used to build a bean to be passed to the SuccessPage
8.1 Standard commands

Below is an example of the command used to delete the selected observations:

<Command>

 <Name>deleteObservation</Name>

 <Class>gov.nasa.gsfc.volt.web.DeleteObservation</Class>

 <Validator>gov.nasa.gsfc.volt.web.ObsSelectionValidator</Validator>

 <SuccessPage>ObservationSetup.jsp</SuccessPage>

 <FailPage>ObservationSetup.jsp</FailPage>
</Command>

8.1.1 Null commands

Several operations within Web VOLT require a two-step process. The first step being the one in which the user provides the relevant information (for example the properties of a new observation to be added to the system), and the second step being the actual execution of the command itself, i.e. an update of the underlying system models.

In such cases, the first step usually does not involve an actual command class, as it is simply a matter of carrying out some basic validation to ensure that the command can be carried out, and then redirecting the user to the appropriate Java Server Page (JSP). For this reason, a ‘NullCommand’ was created and can be used whenever there is no need for a Command class to be utilized. This class simply provides an empty implementation of the ‘processCommand’ method.

An example of this is illustrated below:

<Command>

 <Name>addObservation</Name>

 <Class>gov.nasa.gsfc.volt.web.NullCommand</Class>

 <SuccessPage>ObservationForm.jsp</SuccessPage>

 <BeansBuilder>gov.nasa.gsfc.volt.web.AddObsBeansBuilder</BeansBuilder>

 </Command>

 <Command>

 <Name>processAddObservation</Name>

 <Class>gov.nasa.gsfc.volt.web.AddObservation</Class>

 <SuccessPage>ObservationSetup.jsp</SuccessPage>

 <Validator>gov.nasa.gsfc.volt.web.ObservationValidator</Validator>

 <FailPage>ObservationForm.jsp</FailPage>

 </Command>

8.1.2 Wizard Commands

A wizard command goes through a series of sub-commands in order to complete a particular process. It provides a means of being able to move forward and backward between the sub commands.

Many wizards tend to return to their originating page, i.e., they provide a series of steps, which change the state of the existing system. In order to enable this process, a specialized wizard command called a ‘RoundTripWizardCommand’ was created.

Below is an example of the RoundTripWizardCommand used for the purposes of importing a proposal into Web VOLT.

<Command>

 <Name>importProposal</Name>

 <Class>gov.nasa.gsfc.volt.web.RoundTripWizardCommand</Class>

 <SubCommands>

 <SubCommand>

 <Class>gov.nasa.gsfc.volt.web.NullCommand</Class>

 <SuccessPage>ImportProposal.jsp</SuccessPage>

 </SubCommand>

 <SubCommand>
 <Class>gov.nasa.gsfc.volt.web.ImportProposal</Class>

 <SuccessPage>Undefined</SuccessPage>

 <FailPage>ImportProposal.jsp</FailPage>

 </SubCommand>

 </SubCommands>

</Command>

8.1.3 Command classes

All commands implement the Command interface. This interface contains a single ‘execute()’ method, which takes an HttpServletRequest and an HttpServletResponse and performs the execution of the command. An abstract class called AbstractCommand, which is the base class from which all commands are derived, implements this interface. All concrete commands must provide an implementation of the abstract method ‘public abstract boolean processCommand(HttpServletRequest request, HttpServletResponse response)’. This method is where the actual processing of the command takes place and returns true if the operation was successful.

AbstractCommand also has accessor/modifier methods for operations on the following command-related attributes:

· BeansBuilder

· Validator

· SuccessPage

· FailPage

8.1.4 Validator classes

All validators implement the Validator interface. This interface contains a single ‘validate()’ method, which takes an HttpServletRequest. All implementers of this class perform the validation and return true if the request information satisfies the desired conditions, or false if certain information is invalid.

8.1.5 BeansBuilder classes

All BeansBuilders implement the BeansBuilder interface. This interface contains a single ‘buildBeans()’ method, which takes an HttpServletRequest. All implementations of this class provide a concrete implementation of this method, which is used to build the beans needed to store information for a given JSP. The method also adds the beans to the request so they can be referenced when needed.
8.2 Initializing a bean

In order to initialize and use a bean within a JSP, use code similar to the following:

<jsp:useBean id="obsSetupBean"

 class="gov.nasa.gsfc.volt.web.ObservationSetupBean"

 scope="session">

<%

 obsSetupBean.init(request);

%>

</jsp:useBean>

8.3 Referencing the bean

A bean can be referenced within a JSP with code similar to the following:

<%

if(obsSetupBean.getObservationBeans().length > 4)

{

 // do something

}

%>

8.4 Sending a command

The most common means of sending a command in VOLT is carried out as follows (these steps are carried out within the JSP code):

1. Import the generic Web VOLT JavaScript library by inserting the following line within the head of the JSP:

<script src="./VoltJsLib.js"></script>
2. Specify the form by using the following code:

<volt:form name="volt" postPage="JSPPageName.jsp">…</volt:form>
3. Use code similar to the following for the relevant link(s):

10/28/2003
VOLT Programmer’s Guide
 1
10/28/2003
VOLT Programmer’s Guide
19

