Implementing Java for Embedded Systems: An Overview

David Hardison

Goddard Space Flight Center

Greenbelt, MD 20771

David.A.Hardison.1@gsfc.nasa.gov
tel: +301-286-8471

Chi Tran

Commerce One

1100 West St.

Laurel, MD 20707

chi.tran@commerceone.com
tel: +301-939-1160

Abstract

Originally developed for embedded systems in 1995, Java has been widely accepted by Web and Internet developers because of its rapid development cycle and rich API. Popularization of handheld devices has motivated software companies to develop standards, specifications, and tools that enable Java to be more easily implemented on embedded systems. With Sun Microsystems leading the effort, several specifications have been written to address issues with compatibilities across multiple device platforms. Sun also provides reference implementations of specifications, enabling developers to create applications for embedded devices today. This paper seeks to provide an overview of technologies supplied by Sun and techniques to implement Java using those technologies.

Introduction

In 1990, Sun Microsystems began “Project Green” with the goal of developing a prototype for a consumer device that merged computing and home appliances. The prototype, called Star7, would be a portable home controller capable of commanding a TV/VCR, displaying TV program guides, helping balance a checkbook, and act as a distributed whiteboard and appointment book. The device housed a Sun microprocessor, a 5” touch sensitive display, and had wireless networking capabilities [1].

Software that ran the Star7 was envisioned to be dynamic. That is, software modules could be loaded by transmission via the wireless network, reducing onboard memory, thereby reducing the cost of the unit. For example, the Sun team imagined that the device would download a TV-remote GUI from the TV itself when someone wanted to use it as a TV remote controller [1].

Originally, the software that powered Star7 was implemented in C++. Developers of the Star7 soon learned that it became increasingly difficult to produce software that provided the advanced capabilities planned for it. Even though the team consisted of highly skilled programmers, it became increasingly difficult to track, reduce, and avoid programming errors. The goal of reliability and security over a wireless network was compounded by the need for portability [1]. James Gosling realized a better programming language was needed to support the capabilities of the Star7. He and his team at Sun developed the “Oak” programming language with the intent of creating a platform independent language that would control consumer devices and appliances. Although the market was not yet prepared for intelligent consumer devices, characteristics such as software portability, security, and remote delivery of software was ideal for the World Wide Web. In 1995, Oak was renamed by Sun Microsystems and deployed as Java™ [2].

Since then, Java has been popularized on desktop systems, back-end enterprise servers, and on the World Wide Web. As time passed, the market regained its interest in mobile computing in the form of personal digital assistants and mobile phones. Sun and its industry partners recognized the importance of Java in producing powerful yet portable software. However, at that time, the core Java runtime environment had grown enormously, presenting a problem on small devices with limited resources such as memory. Java went full-circle with Sun’s release of the PersonalJava™ 1.0 specification in September of 1997. PersonalJava would be a trimmed version of the Java runtime environment, making it small enough to fit on small devices [1]. Soon after, Sun also released the EmbeddedJava™ specification that is an even smaller specification targeted for very small components such as industrial controllers.

Shortly thereafter, Sun re-invented Java with the Java 2 Platform™. At JavaOne™ in 1999, Sun Microsystems and Palm Computing unveiled the K Virtual Machine™ (KVM), an even smaller Java virtual machine that ran on Palm devices. The KVM was the first realization of the Java2 Micro Edition™ (J2ME) specification. Even though PersonalJava remains widely used, the J2ME specification and the KVM are the state of the art in embedded Java technology today.

This paper explores how the Java programming language can be used to implement solutions on embedded devices. For the benefit of those unfamiliar with Java, a brief description of the benefits of the language and the drawbacks of operating in the Java runtime environment are presented. Later, the development and deployment process for using PersonalJava, EmbeddedJava, and the KVM is discussed. Along the way, the details of each virtual machine (e.g. capabilities, limitations, and memory footprints) are presented and analyzed.

Benefits of Java

Because Java is object oriented, all data structures other than primitive types are objects. Object oriented development requires that programmers categorize data and operations into discrete objects containing both data and methods. The claim is that this practice forces programmers to think deeply about what it is they are developing and this deep thinking is generally beneficial [3].

Objects in Java are passed as references. They are all allocated dynamically and managed by a rooted reference tree, not by reference counting. An automatic garbage collector reclaims un-referenced objects periodically without being explicitly directed by programmer-implemented instructions. This greatly reduces memory errors that occur from programming mistakes in allocation and de-allocation of memory as in C and C++[3].

Java provides built-in support for exception handling. Exception handling provides a way to trap unforeseen errors that occur during the runtime execution of a program. Therefore, the programmer is free to write code without having to validate or assert all possible conditions that may or may not result in a system error. Java provides a mechanism to throw and catch exceptions without obtrusive instructions that may make code more difficult to read and understand [3].

Java has support for multithreaded execution, which supports thread creation, synchronization, and notification [3]. It is important to note that the specification of Java’s thread model can be supported by any platform even though a platform may not support threads at all. This is because the implementation of the virtual machine abstracts the behavior of threads and adapts it to the base platform. If the platform does not support threads, then the VM will simulate it.

Java’s portability is its greatest benefit. Since Java is compiled into byte code and then interpreted, a Java application is portable to any platform for which a compliant virtual machine and required runtime libraries are available [3]. This allows the programmer to write the application once with little consideration of possible platforms that the application must support.

Disadvantages of Java
One of the most significant drawbacks of Java technologies with respect to embedded computing is the size of the runtime environment needed to support Java applications. The Java 2 Platform Standard Edition™ (J2SE) has grown to nearly 26MB on Windows platforms from only 8MB in JDK1.1 [3]. Much of the size can be attributed to the run-time classes and support files for feature rich APIs such as Swing. The rich APIs make Java a convenient programming language to developers. On desktop systems, the wealth of programming support is appreciated, but on storage-limited devices, the size is simply intolerable.

Since Java is an interpreted language, execution of Java applications is slower than that of applications written in native code. Although there are byte code compilers such as the Just-in-Time™ (JIT) compiler and dynamically optimizing VMs like the Hotspot™ VM, the overhead cost in space and added processing would negate benefits of performance gains on small devices [3].

Aside from being an interpreted language, there are several other factors inherent with Java that makes it slower than that of C or C++. Instead of using raw pointers, Java uses references that are tracked in a reference table containing object pointers. This enables the Java VM to closely track memory access and allows the garbage collector to consolidate memory, but adds another level of indirection. The VM also performs runtime checks during execution such as testing for null values and array boundaries to quickly catch and handle programming errors. Since Java was designed to be multithreaded, many objects require synchronized access by design, incurring additional overhead in obtaining locks [3].

When developing for desktop systems, the tradeoff of size and performance for robustness is worthwhile. However on smaller systems such as handheld devices, the overhead in size and performance easily consumes all available resources leaving little room if any for application code [3]. Sun and its industry partners realized that, in order to effectively use Java on resource-limited devices, they had to come up with another specification to specifically address small devices.

Sun Specifications for Embedding Java

Between 1997 and early 2001, Sun Microsystems published three canonical specifications for Java application environments on small devices, the earliest being PersonalJava, followed by EmbeddedJava, and most recently the Java 2 Micro Edition (J2ME) suite of specifications. Being earlier specifications, PersonalJava and EmbeddedJava are based on JDK 1.1.x while the J2ME specifications are built on the Java 2 Platform and JDK1.2. Figure 1 shows the relative size of each of the JDK 1.1 based application environments and their intended platforms [1]. PersonalJava and EmbeddedJava are very similar, but EmbeddedJava is intended for dedicated-purpose devices that are very resource limited. Its specification is much less particular than the PersonalJava specification since it is not meant to be general purpose or portable to many different devices.

Sun, realizing that one specification cannot be supported on every device, tailored the J2ME to use configurations and profiles to specify application environments [3]. J2ME is really a group of specifications that describe application environments for groups of devices that have some type of commonality. Configurations define the minimal requirements for running Java on devices with similar characteristics such as available memory, processing power, virtual machine features, and a core set of classes. Profiles further specify the APIs for similar devices.

Configurations themselves only define a minimal set of requirements. For example, the graphical user interface classes are defined by profiles and not by configurations because the UI is not considered common among large groups of devices. Some devices have no user interface and those that do can vary greatly. In other words, configurations target different computing systems like desktops versus handheld devices. Profiles target differences between common computing systems such as cell phones and personal digital assistants (PDA).

To date, only two configurations have been defined. They are the Connected Device Configuration (CDC) and the Connected Limited Device Configuration (CLDC). Also, the only formalized profile is the Mobile Information Device Profile (MIDP), which is targeted for mobile phones. Both configurations and profiles are defined by the Java Community Process™ (JCP) -- an open, formal process that Sun uses to introduce and revise Java technology specification [3]. Figure 2 diagrams the relative size of the each specification and their targeted devices.

The J2ME suite is still being refined by Sun expert groups. Thus far, only the CLDC configuration has been formalized. The CDC has been defined, but still needs to be accepted in the JCP. The Foundation Profile, Personal Profile, RMI Profile, and PDA profiles are in the process of being defined, leaving the MIDP as the only formalized profile [3]. According to Sun, the PersonalJava technology will be rolled into the CDC and Personal profile combination [4].

It is important to note that none of the previously mentioned specifications directly address a hard real-time environment. There are currently two real-time specification efforts in existence; one being run by the Sun sanctioned Real-Time for Java Experts Group (http://www.rtj.org) and the other organized by the J Consortium (http://www.j-consortium.com). Neither have been formalized nor do they have a reference implementation.

PersonalJava and EmbeddedJava Specification

The PersonalJava specification is designed for web-enabled consumer devices that are mainly executing applets downloaded from the network [4], but has been used in industrial environments as well. The latest specification, designated as version 1.2a, was published on November 30, 2000. It requires full support for both the Java programming language as defined in the first edition of The Java Language Specification and the Java virtual machine version 1.1 as defined in the first edition of The Java Virtual Machine [5].
PersonalJava also requires that an implementation of the Java native interface must be provided. The specification calls for a version of JNI that conforms completely to JNI 1.1, but also requires that several (not all) new constants and methods be implemented from the JNI 1.2 specification [5]. Integrating native code with PersonalJava can be done either through the JNI or by linking directly with the VM.

The API for PersonalJava is mainly derived from the JDK1.1.8 with support for a few features of the security package in JDK1.2.2. The following packages from JDK1.1.8 must be fully supported: java.applet, java.awt.datatransfer, java.awt.event, java.beans, and java.text. The following packages from JDK 1.1.8 are required but modified slightly: java.awt, java.awt.peer, java.io, java.lang, java.lang.reflect, java.net, java.text.resources, java.util, and java.util.zip. The following packages from JDK 1.2.2 must be partially implemented and/or modified: java.security and java.security.cert. Other packages such as java.sql, java.math, java.rmi, and the code signing mechanism from JDK 1.2.2 are optional [5]. See the PersonalJava Application Environment Specification version 1.2a for specific details.

The EmbeddedJava specification is similar to the PersonalJava specification in that it also requires that an implementation fully support the Java language specification and the Java virtual machine specification. However, the EmbeddedJava specification is much less definitive with the API. The java.applet package is unsupported, while the remaining packages are configurable [6].

PersonalJava and EmbeddedJava Development Process

Recall that Java software must execute within a runtime environment to interpret byte code and support calls to Java APIs. PersonalJava and EmbeddedJava provide a runtime environment that Sun refers to as the application environment. The implementation of this environment runs on top of some real-time operating system (RTOS) on a particular device. Figure 3 illustrates the layering of Java’s runtime environment on a device. Sun provides source code for a reference implementation of the PersonalJava and EmbeddedJava application environments, both of which use the same virtual machine code, but the API code varies [7, 8].

When developing an application using PersonalJava or EmbeddedJava, the build process produces an executable image made up of the application Java code and the application environment. There are two ways to build an executable image. Typically, the application is first built and tested for an emulation environment on a desktop system. Once developers are satisfied with the functionality and performance of the application in the emulation environment, the application is built for the target RTOS. Sun provides the PersonalJava Environment Software (PJES), which includes a build environment and source code for a reference implementation of the Personal Java Application Environment(PJAE). Using the PJES, an executable image can be built for either the desktop system using the PersonalJava Emulation Environment (PJEE) or the target RTOS [7, 8].

Source for Solaris and Windows PJEE is provided by Sun along with a POSIX and ANSI C compliant virtual machine. Before a PersonalJava or EmbeddedJava application can be deployed to a target operating system, the virtual machine, GUI, networking, multimedia, and other system specific source code must be ported to the target RTOS. If there are POSIX libraries available for the target RTOS, then porting of the virtual machine is relatively simple [7].

Porting the VM requires several steps. If the RTOS has POSIX libraries, then the porting process begins with getting the reference Solaris VM to compile and link without any errors. Otherwise, POSIX like libraries must be developed first. Then one has to implement functions defined in the Host Programming Interface (HPI) containing functions that handle memory allocation, timing, I/O, startup, termination, threads, synchronization, and dynamic linking. One will also have to implement math functions defined in sysmacros_md.h and floating-point conversion functions in typedefs_md.h. A search path mechanism may be implemented if a file system is present on the target RTOS. That mechanism is used for loading class files and resources during runtime. Finally, an executable image needs to be built, the image must be downloaded on to the target platform, and the startup routine needs to be implemented [7].

The PJES contains a number of scripts that compiles Java, C, and assembly code and links the result to produce an executable on a target system. The build process begins with compiling all Java files using javac, the Java compiler. Then, javah is run against the class files created by javac to generate C header files and stubs for all defined native methods in the Java code. JavaCodeCompact is also run against the class files to create a C source file that contains data structures and C code translated from the Java classes. Optionally, JavaDataCompact can be run on any data files needed by the application in order to translate the data files into C structures so that it can all be stored on ROM as part of the executable image. Once a developer implements the code for all generated C stubs from running javah, all the C application code and code for the application environment (i.e. the JVM) is compiled and linked with support libraries to produce an executable image file [7]. This process is diagrammed in Figure 4.

PersonalJava has a memory footprint of about 1.7MB. This is due to the 1.6MB needed for over nine hundred class files and another 128KB for the virtual machine [11]. EmbeddedJava requires at least 128KB since it uses the same VM as PersonalJava. The bulk of the remaining memory footprint depends on supporting class files that are not strictly defined by the specification. Needs of the application code dictate the size of the memory footprint for either embedded specification, but for EmbeddedJava, application code is the driving memory requirement since the virtual machine requirements are reduced due to the elimination of many of the support classes needed for PersonalJava.

Debugging applications in PersonalJava and EmbeddedJava can be done in stages. The easiest place to debug and correct errors is on the host or emulation environment. If the Java code is generic enough, it can be debugged using jdb, the java debugger that is supplied by the Java SDK. Since Java technology hinges on the virtual machine regardless of what platform it is run on, it is crucial that the VM is bug-free. The reference implementation is implemented in C and we can assume that it has been tested and debugged by Sun. However, if one is suspicious of problems in low-level C code implementing the virtual machine functions, then one can use traditional debugging tools such as gdb. PersonalJava supports the Java Virtual Machine Debugging Interface (JVMDI), which can be used by a custom debugger or used by third party debugger.

J2ME CLDC and CDC Specification

The CLDC requires full support of the Java language specification with a few exceptions. The CLDC specification does not support floating-point numbers, also meaning that the java.lang.Float and java.lang.Double classes do not exist. Finalization is not supported either since it complicates garbage collection. Lastly, runtime error handling can be configurable. The CLDC defines an extensive set of exceptions classes that extend from java.lang.Exception, but only defines three error classes -- java.lang.Error, java.lang.OutOfMemoryError, and java.lang.VirtualMachineError [3].

The CLDC requires full support of the Java virtual machine specification, with a few exceptions [3].

· Following the CLDC specification, the VM specification does not support floating-point types or any byte codes referring to floating point numbers.

· The Java Native Interface (JNI) is not supported.

· For security reasons, classes can only be loaded through the system class loader; user-defined class loaders are not supported.

· Reflection is not supported, meaning that the java.reflect package does not exist and that object serialization, debugging via JVMDI, and profiling via JVMPI which all use reflection, are not supported.

· There are no thread groups, daemon threads, or weak references.

· The exception handling mechanism by the VM is not defined even though the classes are.

· Finally, a CLDC VM does not perform class verification on it’s own. Rather, a pre-verification process on the host platform verifies classes before they are downloaded to the target device. Special data values are inserted into the class files during that process. The CLDC VM on the target device merely hashes those values to verify that the class was indeed verified.

The CLDC uses a sandbox type of security model similar to applets running on a web browser. The security model of the J2SE is too large and complicated to fit the needs of a small device. As mentioned earlier, classes must be pre-verified before they are installed. Class files cannot be downloaded on the fly by a java application, but a device application can download and install the classes outside of the java process. Any downloaded application cannot replace any of the system classes, which are classes belonging to the VM, configuration, or profile. New native code cannot be accessed once the VM implementation is built and installed. Any native code used by an application must be linked into the VM [3].

The API classes that are specified to be present in the CLDC are a subset of the classes defined in the Java 1.02 core runtime, but are inherited directly from the JDK 1.3. System classes such as Object, System and Thread are included from java.lang. The type classes such as Byte, Integer, and String are also included from java.lang. Basic stream, reader, and writer classes from java.io are present. Basic utility classes such as simple collections and Date comprise classes from java.util. The following packages are not included in the CLDC specification: java.lang.applet, java.lang.awt, java.lang.beans, java.lang.math, java.lang.net, java.lang.rmi, java.lang.security, java.lang.sql, and java.lang.text. Localization is not supported either, leaving each application to be localized separately [3].

Handheld systems do not have the same I/O and network support that most desktops do since they do not have file systems and do not have a socket protocol implementation. The CLDC instead uses a simplified generic connection framework for any I/O. The framework defines simple interfaces that must be implemented by system specific drivers on the target platform. The generic connection framework consists of ten classes and interfaces in the javax.microedition.io package [3].

While the CLDC is more or less targeted to devices with 128K of non-volatile memory and 32K of volatile memory, the CDC runs well with at least 512K of non-volatile memory and 256K of volatile memory. Unlike the CLDC, the CDC requires full support of the Java language specification and the Java virtual machine specification with out exceptions. The CDC also requires support of all required classes from the CLDC plus some additional classes from java.lang, java.io, and java.util. The API also consists of the following packages that are included in the CDC but not the CLDC: java.lang.reflect, java.net, java.security, java.lang.security.cert, java.lang.security.spec, java.text, java.text.resources, java.util.jar, and java.util.zip. Unlike the CLDC, the CDC does support Reflection, correlating with the inclusion of the java.lang.reflect package. Lastly, the Java Native Interface 1.1 and Java 2 extensions to JNI must be supported as well [3].

The CDC specification is still under review, while the CLDC remains the only finalized configuration. Although there are only two configurations in the Java 2 Micro Edition family, they are comprehensive. Recall that the intent of configurations is to specify a minimal set of core features necessary to run Java software. User interfaces and database connectivity are examples of functionality left for profiles to specify. Profiles specify additional APIs that augment the core functions needed by the VM over and above simply processing system level Java software.

Thus far, only the Mobile Information Device Profile (MIDP) has been fully defined and finalized. This profile targets small computing devices with a monochrome or color display with 96 by 54 pixels, either a touch screen, alpha numeric keypad, or a full keyboard for input, a wireless, limited bandwidth network connection, and an extra 136K of non-volatile memory to store classes and libraries. The MIDP adds a user interface, a simple database for storing records, timer notification mechanism, a subset of HTTP network connectivity, and application start, stop, and cleanup through the MIDlet specification which is similar to applets. These features make it possible to build useful, user-oriented applications on PDAs like the Palm device.

Application Development using the KVM

The KVM is Sun’s reference implementation of the CLDC specification. Sun provides source code for the Windows and Solaris desktop environment. The Sun version can be ported relatively easily to any POSIX and ANSI C conforming operating system [9].

As with PersonalJava, applications using Java 2 Micro Edition are built first for an emulation or host environment, usually a desktop, and then ported to the target platform. Developing Java software in the emulation environment is similar to development for desktop applications. Java code is compiled and built using a standard javac compiler. Starting applications in the emulation environment using the KVM is done through the command line, similar to starting any other Java application in the J2SE. However, on the target platform the startup procedures depend largely on the profile used and/or a platform dependant implementation. The CDC and the CLDC do not specify how Java applications are controlled [9]. Profiles such as the MIDP may specify this behavior but are not required to. In the case of the MIDP, the MIDlet specification describes how application code can be loaded, executed, and terminated.

Fortunately, the KVM does come with an application control framework called the JAM, the Java Application Manager. JAM provides a framework for application lifecycle management and for downloading, installing, and updating Java software. JAR files containing application software is loaded in the JAM framework by an implementation of the generic connection interface. In the emulation environment, JAR files and the classes contained within are loaded from the file system. Alternative loading mechanisms must be implemented on devices without a file system [9].

Most of the KVM source code is common across all platforms, but porting still requires a few runtime functions to be implemented. The functions that need to be implemented deal with the following: initialization of the VM, finalization (optional), heap allocation and de-allocation, fatal error reporting, event handling, and system time retrieval. Also, compilation flags, definitions, and macros must be set for options such as byte order, memory allocation settings, garbage collection options, interpreter options, debugging and tracing options, networking, storage options and error handling macros. The KVM has already conveniently implemented some networking and storage mechanisms using the generic connection framework. Long integers (64-bit) and floating point numbers can also be supported even though the CLDC specification does not. Although the KVM comes with a class loader, it requires that a file system be present on the platform. In many cases, devices do not have a file system. To implement a custom class loader, one needs to re-write not only the class loader, but also the JAR file reader for decompressing class files and resources [9].

The KVM does not support the Java Native Interface, commonly used to integrate natively implemented functions and libraries written in C. On desktop systems, native methods are loaded via shared libraries such as .dll files on Windows and .so files on Solaris. To call native methods from Java using the KVM, those methods must have been linked into the VM itself when the VM was built. The C functions must be named the same way that JNI would name them when using the javah utility. Even though JNI is not used, its conventions are borrowed for consistency reasons. Lastly, the JavaCodeCompact tool, which comes with the KVM SDK, should be used to create lookup tables that maps native code to calls in Java [9].

On some systems, JavaCodeCompact can be used to deploy a Java application with the VM itself similar to the way it is used in PersonalJava. First, all Java code is compiled and merged into an archive file (i.e., jar or zip file). Then JavaCodeCompact is run against it to produce a .c file. It can also be run on the archive of classes to create a .c file containing the lookup table. The produced .c source files are compiled and linked to the VM during the VM build process [9]. This process creates a VM that starts up more rapidly since class files are pre-loaded. This also helps avoid issues with how classes are loaded with out a file system.

Debugging applications for the KVM is also best done on the host system with standard Java debuggers like jdb. Effective debugging on the target platform will depend on the availability of development tools specific to the platform. At times, a comprehensive logging tool may be the best method of debugging.

Conclusions

The future of Java technology lies in the J2ME body of specifications, however implementations of the technology have not yet matured. Although there is quite bit of support for the market-leading PDA operating system, PalmOS, developers must rely on themselves to deploy J2ME applications on other devices. The PersonalJava specification will eventually evolve into a J2ME configuration and profile, but there has not been any recent development in the specification or implementations. However, application development using PersonalJava is probably the easiest Java solution today since there is ample vendor support. Wind River, a key partner in the development PersonalJava, supplies a virtual machine, development tools, and technical support for their own RTOS called VxWorks. Access to trained technical support could dramatically reduce development time. Otherwise, developers must rely on assistance from their peers in the embedded Java community via newsgroups and mailing lists. When time-to-market is a key factor in the development process, choosing a technology that has vendor support is vital. However, researchers are more likely to benefit by focusing on the J2ME implementations since the learning experience is valuable and keeping current with the latest specification prepares them for future challenges.

The J2ME suite will eventually encompass a variety of devices, but currently it only targets handheld devices. However, it is possible to create software that does not conform to the specifications. Suppose an application needs to use floating-point numbers. On the KVM, floats can be supported if certain definitions are used during compilation. The KVM is an implementation of the CLDC, but the CLDC specifically says that floating-point numbers from the Java language specification are not supported. It was designed for handheld devices, which do not usually have processors with floating-point units installed. To ensure interoperability among handheld devices, the specification forbids the use of floats. Non-compliance with the specification, such as using unsupported types, is acceptable if an application is not meant to be interoperable. If the application is targeted for a platform that is distinct enough from the ones that are targeted by the CLDC and CDC, then it may not be very interoperable any way.

Java code development for embedded devices is no different that Java code development for desktops minus some parts of the standard API. The difficulty lies in the interfaces with device hardware. Hardware vendors typically supply device drivers written in C, which must be connected with Java using some type of native interface. If required, porting of the Java virtual machine and verifying that it operates nominally can also be a difficult task. Developers with an eclectic background in computing may easily succeed in embedded Java development, but less experienced developers may struggle since the implementation requires expertise in Java and knowledge of C, hardware, and potentially electronics.

Related Topics

During the writing of this paper, Sun released a reference virtual machine implementation of the CDC, called the C Virtual Machine (CVM). There is also a reference implementation of the Foundation profile. The Foundation profile enables devices to utilize a fully functional VM with a comprehensive API that is very similar to the J2SE without any user interface classes. Code from Sun can be built for VxWorks and Linux without any porting. The porting process of the CVM is similar to that of the KVM.

Specifications for real-time Java are currently being developed. Existing specifications do not address issues dealing with hard real-time compliance. As mentioned earlier, there are two groups that are developing specification for real-time implementations. Sun has formed a real-time expert group, which has a specification for review available at: http://www.rtj.org. The other specification is being developed by the J-Consortium, available at http://www.j-consortium.com.

There are also a host of vendors that supply Java virtual machines other than those developed by Sun. Some notable third-party virtual machines are: ChaiVM by Hewlett-Packard, J9 virtual machine by IBM, PERC virtual machine by NewMonics, Inc., Kaffe by Transvirtual Technologies, and Jeode by Insignia Solutions [10].

Java processors also present an interesting twist in Java technology. Instead of a virtual machine, Java processors actually execute byte code in silicon. Obviously, there is much more to a virtual machine than the byte code interpreter. All software components needed by a virtual machine such as the garbage collector, class loader, threads, etc. that are implemented in C or C++ get compiled into byte code instead of object code. Therefore, a platform that uses a Java processor consists of the processor itself serving as the byte code interpreter and supporting software that is all compiled into byte code. Sun has a chip call picoJava-II and Patriot Scientific developed one called the PSC1000 [10].

Appendix -- Acronyms

AE
- Application Environment

ANSI
- American National Standards Institute

API
- Application Programming Interface

CDC
- Connected Device Configuration

CLDC
- Connected Limited Device Configuration

CVM
- C Virtual Machine

GUI
- Graphical User Interface

HPI
- Host Programming Interface

HTTP
- Hyper Text Transfer Protocol

J2ME
- Java 2 Micro Edition

J2SE
- Java 2 Standard Edition

JAM
- Java Application Manager

JAR
- Java Archive

JCP
- Java Community Process

JDK
- Java Development Kit

JIT
- Just-In-Time

JNI
- Java Native Interface

JVM
- Java Virtual Machine

JVMDI
- Java Virtual Machine Debugging Interface

JVMPI
- Java Virtual Machine Profiling Interface

KVM
- K or “Kilo” Virtual Machine

MIDP
- Mobile Information Device Profile

PDA
- Personal Digital Assistant

PJAE
- PersonalJava Application Environment

PJEE
- PersonalJava Emulation Environment

PJES
- PersonalJava Environment Software

POSIX
- Portable Operating System Interface

RMI
- Remote Method Invocation

RTOS
- Real Time Operating System

SDK
- Software Development Kit

UI
- User Interface

VM
- Virtual Machine

References

1. Sun Microsystems, Inc. “PersonalJava Technology White Paper” (Aug. 1998). Feb. 2001. < http://java.sun.com/products/personaljava/pj_white.pdf>

2. WindRiver. “Adapting Java Technology for Real-Time Embedded Systems” Feb. 2001. < http://www.windriver.com/internet/html/java_wp.html>

3. Giuguere, Eric. Java 2 Micro Edition. New York: John Wiley & Sons, Inc., 2000

4. Sun Microsystems, Inc. “Frequently Asked Questions About PersonalJava Technology” Feb. 2001. <http://java.sun.com/products/personaljava/faq.html>

5. Sun Microsystems, Inc. “PersonalJava 1.2a (Final) Specification”, <http://java.sun.com/products/personaljava/index.html>

6. Sun Microsystems, Inc. “EmbeddedJava 1.1 Specification”, <http://java.sun.com/products/embeddedjava/index.html>

7. Sun Microsystems, Inc. “PersonalJava Environment Software Documentation”, PersonalJava source code implementation Version 3.1, Feb. 2001, <http://www.sun.com/software/communitysource/personaljava/>

8. Sun Microsystems, Inc. “EmbeddedJava Environment Software Documentation”, PersonalJava source code implementation Version 3.1, Feb. 2001, <http://www.sun.com/software/embeddedjava/>

9. Sun Microsystems, Inc. “KVM Porting Guide”, Java2 Platform Micro Edition Connected Limited Device Configuration Version 1.0.2, Feb. 2001, <http://www.sun.com/software/communitysource/j2me/cldc/download.html>

10. Barr, Michael. “Developing Embedded Software in Java, Part 2: Products and Solutions”, 1999, Mar. 2001, <http://www.netrino.com/Papers/EmbeddedJava/Part2/index.html>

11. Sun Microsystems, Inc. “PersonalJava 1.1 Application Environment Memory Usage Technical Note” (July 1998) Feb. 2001, <http://www.javasoft.com/products/personaljava/MemoryUsage.html>

Java AE

PersonalJava AE

EmbeddedJava

AE

Desktop OS

Back-End Servers

RTOS, PDAs, High-end mobile phones, Internet TV

Industrial Controllers, Instrumentation, Printers, Pagers

Figure 1. JDK 1.1 based Java Application Environments and their target platforms.

CDC

CLDC

TV set-top boxes

Automobile navigation

PDAs

Mobile Phones

Two-Way Pagers

Figure 2. J2ME configurations and their target platforms.

Figure 3. Relationship of software layers on a device. Areas in gray indicate code implemented in C or assembly. Areas in white are implemented in Java.

Native Methods

Class Library

(platform-dependent)

Class Library

(platform-independent)

Application Code

VM

(platform-independent)

VM

(platform-dependent)

RTOS

NativeMethod Source

*.c

*.s

Java VM Source

*.c

*.s

Java Source

(Class library &

 application classes)

*.java

Data Files

*.properties

*.gif

*.html

*.class

javah

JavaCodeCompact

*.h

classstubs.c

javah

gcc, as

gcc

romjava.c

JavaDataCompact

romfiles.c

gcc

classstubs.o

romjava.o

romfiles.o

ld

Target OS

Support libraries

PJAVA

Executable image

gcc

*.o

Figure 4. PJES build process

PAGE
11

