

Advanced Architectures and Autonomy Branch

Flight Software Branch

(NASA GSFC Codes 588 and 582)
Technology Project Management Plan

Project:

Onboard Component Architecture

 Plan Version: 2

Plan Date: May 1999

Technology Type: Research and Development

Technology Focus Area: Mission Autonomy

ROM Staffing: 2.5

Project Manager: Mark W. Stirling

Onboard Component Architecture

Technology Project Management Plan

Approval

__

Name

Date

Code 588 Management

__

Name

Date

Code 580 Management

__

Name

Date

Customer Advocacy
Chapter

1

Project Summary and Management Approach

Long Term Goal(s)
The long-term goal of the proposed research is to enable advanced onboard autonomy and reuse across missions. The proposed research intends to achieve this goal by defining a real-time, reusable component specification for flight software (FSW) that will assist with the development and deployment of enhanced, autonomous onboard software systems. Because flight software is a large and complex domain, this effort will initially focus upon the Command and Data Handling (C&DH) subsystem. Other areas of flight software such as Guidance and Navigation Control (GNC) will be infused through collaborative efforts with other reuse working groups (see section on collaborative efforts).

The intended specification for the C&DH will provide an object model that will define the attributes and behaviors of every major reusable object to be used in the system. The specification will also provide a standard configurable framework in which active components are given roles and responsibilities in an executing system. Conceptually, the framework is a configurable engine in which the defined reusable components coexist and operate. Additionally, the specification will provide other useful features such as implementation opaqueness (allowing component implementations to be seamlessly swapped in or out of the system, hierarchical consistency (defining a common object or set of objects from which all components derive), and reusable abstract data types (Hash Tables, Linked Lists, etc…). It is important to mention, however, that the specification is not an implementation nor does it mandate a specific language or implementation. This was decided upon to allow users of the architecture to choose an appropriate language and/or implementation for the mission. The specification is however, a framework that defines onboard components, and more importantly, how these components interact or behave with each other in an end-to-end system. Language specific “mappings” will be used to implement the specification. Because the specification will be denoted using the Object Management Groups (OMG) Interface Definition Language (IDL), an architecture may be implemented in any language that supports basic object-oriented features. Consequently, to prove the usefulness of the specification, this project will also provide an implementation for the specification. The initial mapping will be in C++.

Because the enablement of enhanced autonomy is the primary goal of this project an autonomy component or federation of components will be added to the specification. This project is working closely with the Onboard Artificial Intelligence (OAI) project (see PMP for OAI) to define a component interface for an autonomous capability. The OAI is in the process of identifying autonomous tasks that would be better served if migrated onboard. Reactive planning is one such area of interest. Once the OAI has identified the required constraints, dependencies, inputs and outputs for autonomous capabilities, it is the intent of the OCA project to integrate those findings into the architecture.

Another goal of this project is to determine the feasibility of using higher level languages and proven architectures onboard a spacecraft. In particularly, embedded Java will be researched and used in a small prototype to determine its usefulness as an implementation language for FSW. The prototype will consist of implementing a small section of the specification in embedded Java. Along with embedded Java, minimum, real-time CORBA will also be evaluated for its feasibility as an onboard solution. For both potential solutions applicability will be measured in terms of deterministic behavior, performance, footprint, and ease of use.

To
summarize, the goals of this endeavor are the following:

· Design reusable, object model for the Command and Data Handling Subsystem for Flight Software. The object model will serve as a standard interface set for objects to be used in the C&DH.

· Design a configurable framework in which the C&DH components will reside.

· Implement a C++ mapping of the specification to prove the validity of the architecture.

· Incorporate autonomy into the architecture as self contained components.

· Determine the feasibility of using non-traditional languages or techniques for flight software such as Java and/or embedded CORBA.

The ultimate goal of this endeavor is to define a standard reusable architecture for flight software. The intent of such an architecture is to enable enhanced autonomy by providing a framework on which autonomy may be integrated. A reusable standard in an enabling technology that will provide developers with a higher level of abstraction on which to develop flight software, create an environment that is reusable and configurable, and support plug and play functionality through the use of software components.

Success Criteria
The research for an Onboard Component Architecture will be deemed successful if and only if the following products are realized.

· A reusable object model defined for flight software C&DH. Among standard traits such as flexibility and scalability, the object model should be language neutral, implementation opaque, and allow implementations to be swapped in and out for testing and validation purposes.

· A framework that uses the components defined in the object model to construct the basis for an end-to-end system. The framework serves as the engine or environment in which the defined components will operate.

· An architecture that is interoperable with other related architectures (see Related Technologies) via the publishing of well-defined standard APIs.

· A framework that represents autonomy as self-contained components that may be reused between missions.

· A language specific mapping of the reusable framework that demonstrates the validity of the framework. C++ and real-time CORBA are targeted as potential candidates for this mapping.

As is implied by the criteria for success mentioned above, this endeavor is technically challenging. However the benefits, if realized, could be of tremendous value to the flight software development process.

Operational Concept

TBD

Project History (Milestones/Accomplishments)

February 1999:
Project Initiated

March 1999: 1st Draft of the PMP completed.

May 1999: PMP refocused.

Initial PMP emphasized the use of CORBA as the basis for the architecture. After weeks of evaluating the benefits and drawbacks for using CORBA it was the honest assessment of the team that the framework should not be tied to a particular technology implementation. Instead, the project’s main objective should be to define a language neutral component based specification and framework that would allow for language specific mappings to be implemented as needed. Real-time embedded CORBA is a feasible solution. Particularly with missions that have distributed processors (i.e. several smart instruments) onboard. However, because of size and overhead, a CORBA mandated architecture is not always the correct solution; at least not with the current status of Real-Time CORBA. As stated before, the adopted solution to this problem is to define a language neutral framework that allows for a CORBA mapping when appropriate. The goals of the project have not changed only become more focused.

Project Plan Overview

Work for the component architecture will be divided into three phases. Each phase may be further divided into sub-phases. The end of each phase will result with a demonstration of the work completed in each phase.

Phase I of the OCA project is a two-fold process operating in tandem. The first aspect of phase one is the investigation of new technologies that may be used onboard a spacecraft. In particular embedded CORBA and embedded Java will be evaluated for their applicability in a real-time environment. Evaluation of CORBA will be a matter of researching the status of real-time CORBA primarily at the OMG web site but also with industry CORBA leaders (such as the University of Washington). An evaluation of the current state of CORBA Object Request Brokers (ORBs) will ensue to determine if CORBA is a viable solution in its current state for an onboard environment. Evaluation will be based upon footprint, performance, and determinism. Embedded Java in its current state is not yet suited for flight software. However, because of industry pressure to equip Java for the real-time environment, it is important to follow industry in hopes of using embedded Java as a mapping for the architecture. Note that it is not the intent of this effort to implement an embedded ORB or an embedded Virtual Machine (VM) for Java. This would be competing with industry. However, it may be in our interest to design and/or implement a section of CORBA or Java that would be specific for the flight software domain. For example, CORBA uses the General Inter-ORB Protocol (GIOP) as a means of allowing remote objects to communicate with each other. It is an essential element of CORBA. If we were to use real-time CORBA onboard a GIOP protocol specific to a 1553 network would have to be implemented because flight software typically communicates over 1553.

The second, and most important, sub phase of phase I is the process (for most members of the team) of learning and understanding current flight software architectures, becoming familiar with real-time object oriented analysis and design, becoming familiar with the requirements of the selected base missions for this project, and becoming familiar with VxWorks. An understanding of successful architectures such as CORBA, the Component Object Model (COM), and JavaBeans is also useful for purposes of evaluating the merits of the proposed architecture. Although these tasks do not yield a tangible product (asides from a paper), it is nevertheless important to state this learning process as a phase of the project because it is crucial to the success of this endeavor.

Phase II will commence only after the completion of phase I. Phase II involves deriving objects and their associated attributes and behaviors from the requirements of the selected missions. The primary missions to be used as the basis for analysis and design are MAP and GRO. These missions were selected because of the first hand experience that our flight software engineer (David McComas) has had with these missions in addition to their relative simplicity. The Command and Data Handling subsystem will be the starting point for analysis and design. C&DH can be further divided in to several well-defined tasks such as Command Ingest (CI), Telemetry Output (CO), Health and Safety (HS) etc…Each task will be analyzed and modeled in UML as a component or aggregation of components. This phase will constitute an interative prototyping methodology. Simple tasks will be selected first and quickly prototyped in C++ for correctness. As the process continues more complex tasks and will be selected and integrated into the framework until a complete system in constructed. The process will also involve scheduling design reviews with representatives of 582 who are familiar with flight software. Feedback from such meeting will be crucial for the success of this project. Additionally, there will be a tight collaborative working environment between the OCA and the GNC reuse efforts. Reusable objects may be collaborative designed and shared between the two efforts.

As prototype implementation begins in C++, features of the language that may be correlated to the design will be evaluated. For example, it is possible to specify exceptions in IDL, however, because of restrictions with a development language in a real-time environment certain features may have to be omitted. Exception handling, Run Time Type Identification (RTTI), and the use of template features will have a direct effect on the design and the framework. These issues will be dealt with during this phase.

Another aspect of the second phase is the problem of addressing the inevitable issues related to the constrained physical resources of the environment. During this task an evaluation of overall performance and efficiency of the architecture will be evaluated. This is a most critical process, as the determination of fixed resource constraints will have an effect on the design of the architecture. As best possible, a purely object oriented architecture will be the preeminent contention, however where architectural sacrifices must be made to achieve required performance, it is during this phase that the majority of design modifications will occur.

At the end of phase II there will be a demonstration of the operation of the architecture in a simulated environment. The demonstration will highlight the tradeoffs between implementing flight software using traditional architectures and practices Vs using a component based approach. The demonstration should also demonstrate the importance of using standard in the development and testing environment.

Phase III is the phase in which autonomy is added to the framework implemented in phase II. The goal of phase III is to demonstrate that autonomy can be designed and implemented as configurable, reusable components. The intent is to be able to write an autonomous behavior as a component then drop it into the architecture implemented in phase II.

Phase IV is a product that should result from a successful design and implementation of a reusable architecture. Phase IV would involve developing tools such as an Integrated Development and testing environment tailored for use with the reusable architecture. For example, a tool with a palette of reusable onboard components that allows users to change component attributes and responsibilities visually could be an asset in the development life cycle.

Targeted Customers

Potential Customers

A standard component architecture for flight software can potentially be used and reused by any mission that satisfies the minimum onboard resources required for an instantiation of the architecture (memory, bandwidth, processor speed, etc…). As stated above however, the architecture is an enabling technology for autonomy. When the architecture becomes robust and able to perform complex intelligent logic through the use of modular autonomy components, the architecture and the accompanying autonomy may be used by any mission with requirements for onboard autonomy.

Committed Customers

Code 582 (Flight Software Branch) has expressed a special interest in the design and development of this architecture. Members from code 582 are willing to be active participants in this research effort providing expertise in flight software as well as a simulation and test environment for the architecture. If successful, 582 has the leverage to be able to bring the idea of an onboard component architecture to reality because of their previous involvement with launched missions such as XTE, GRO, and TRIANNA.

Chapter

2

Justification

Customer Need(s)
Advanced onboard autonomy will be realized when the flight software responsible for autonomous operation has reached the required level of maturity and stability necessary for complex logic. Software maturity has been acquired in other software domains by applying proven software development practices such as object-oriented design, extensible architectures, and reusable design patterns. These practices have proven themselves to promote reusability, flexibility, and scalability. Consequently, such practices have become standard in large-scale development in a wide range of software domains. The scope of this research is to bring the success of modern software architectures to the domain of flight software. In particular, this research effort seeks to define a component architecture for flight software that will enable the building of highly autonomous flight software.

The Unit Testing time in the flight software lifecycle is typically longer than development time. This is because there are no standard APIs by which objects may be tested and validated. Flight software (582) uses a High Fidelity (HiFi) simulation developed by Controls Analysts (Code 782) to develop control algorithms and to perform stability analysis. This simulator is used for integration, build, acceptance, and spacecraft integration testing. However, because there is no consistent framework 582 must develop custom test scripts to interact with the simulator. This is an unnecessary and time consuming process that could be simplified if the simulator generated code that uses a standard API.

Projected Customer Benefits
The primary impact of defining a standardized component architecture for flight software is an enabling of robust intelligent spacecraft and instruments. A standard component architecture will facilitate reuse within and between missions. In addition, it will reduce maintenance costs and enable technology insertion via the ‘plug and play’ paradigm. Ultimately, this architecture will advance highly intelligent onboard systems. From a customer perspective spacecraft will be smarter, able to react to spacecraft and environment parameters, and able to selectively collect and download the most optimal science data.

Another significant benefit of a standardized component architecture is the improvement of the testing process. If code generated by the HiFi simulator mentioned above worked with standard APIs, less time would be spent on integrating HiFi generated code. Using a standard framework and interfaces also allows implementation objects to easily be swapped in and out. This is important for testing individual components and for using components to verify other components.

Mapping to Technology Focus Area Roadmap
TBD

Related Efforts

There is a growing interest for object oriented standards for flight as well as ground software. The following is a list of related standards efforts.

TRIANNA FDS Requirements

This effort is identified because it is Code 582’s first attempt at object-oriented requirement analysis. Because these requirements are being structured to facilitate reuse the OCA will leverage off of some of the concepts from TRIANNA.

Standard OS

The Standard OS effort is being led by Code 582 and it is investigating the use of standardized operation systems for flight software. The Standard OS effort is very closely related to the OCA effort because the OCA should be able to reside on a Standard OS.

Guidance Navigation and Control (GNC) Reuse

This effort, being led by David McComas of code 582, is performing a domain analysis on the GNC FSW. Several recent GNC FSW products are being analyzed to derive a reusable framework/architecture with supporting reusable objects. There will be direct collaboration between the GNC effort and the OCA effort because the framework for each should be interoperable. David McComas is actively involved in the GNC and OCA effort.

Space Object Technology Group (SOTG)

The Space Object Technology Group (SOTG) is heading up an effort to define a CORBA compliant architecture for ground system software. Their effort seeks to define an industry standard for flight systems. The SOTG is planning on submitting a proposal to the OMG for a CORBA compliant ground station system architecture. Where applicable it will be in our interest to use a similar design and/or object interfaces to that of the proposal to be submitted by the SOTG. We intend to work in tandem with members of the SOTG.

Research

Awareness of Similar Efforts and Technology Drivers for this Domain

Technology drivers for this effort include the real-time CORBA specification defined by the OMG, research done by the private and open sector in embedded and/or real-time CORBA technologies, and the availability of a commercial grade lightweight (i.e. small footprint, deterministic, etc.) ORB that may be used onboard a spacecraft. If it is determined that an ORB may be used now the focus of an implementation mapping will be emphasized on a CORBA solution.

Similarly, another technology driver is the status of embedded Java. Again if it can be demonstrated that embedded Java is in a state where it can function correctly in a real-time environment then implementation work will be shifted towards embedded Java.

Note that these two technology drivers in no way affect the design of the architecture.

The work from the OAI is also related to this effort. Work from the OAI effort will plug in to the architecture developed by the OCA.

Input from Representative Customers

David McComas (Flight Software Branch 582)

Awareness of Current Research and Accomplishments in this Area

The University of Washington has established itself as a leader for CORBA and distributed computing in general. Douglas C. Schmidt has published several papers on real-time CORBA in addition to an empirical evaluation of the performance of several commercial (and public domain) real-time CORBA ORBs. Douglas Schmidt has also formed a working group that has developed The ACE ORB (TAO) which is an implementation of real-time, minimal CORBA. As of this writing TAO provides real-time capabilities and performs optimally. However, as with most ORBs TAO suffers from a large footprint.

Chapter

3

Collaboration and Technology Transfer

Ideas / Plans for Collaboration

This effort is a joint collaborative effort between 588 and 582. 588 will provide expertise in CORBA, distributed technologies, and Object-oriented design and analysis. 582 will provide expertise in flight software development in addition to personnel and test environment resources. 582 will also provide access to their reusable flight software library written in C++. This will allow us to reuse code already written for flight software.

Ideas / Plans for Technology Transfer and Commercialization

TBD.

Chapter

3

Chapter

4

Technical Approach & Product Assurance

Enabling Technology

The component architecture to be used will be based upon CORBA. More specifically, because flight software executes in a real-time, embedded environment a “lightweight” CORBA ORB will be used for this endeavor. The development language will primarily be C++ however there will be an assessment of the feasibility of implemented CORBA flight software components using JavaTM (or Embedded JavaTM). The expected development environment will be Windows NT and/or Unix using the GNU C++ development tools. The GNU compiler allows cross compilation to VxWorks. VxWorks is the platform used onboard most spacecraft.

Methodology

The Onboard component architecture will be being built using an iterative prototyping methodology. The Unified Modeling Language (UML) will be used for object-oriented design and analysis, following the phases outlined in chapter one.

Testing & Quality Assurance
TBD

Configuration Management
Because development and deployment will primarily be done on the UNIX environment, the CVS configuration management tool will be used for configuration management.

Members of the team and assigned roles are the following:

· Kai-Dee Chu (GST)
 Investigation of real-time CORBA. Investigation of implementing CORBA GIOP over 1553. Analysis and design of C&DH tasks.

· David McComas (GSFC/582) Flight Software expert. Analysis and Design of GNC reusable components. Liaison to 582 and contributing member of related standard architecture efforts (i.e. SOTG and GNC reuse).
· John Stachniewicz (GST) Responsible for VxWorks development environment. Analysis, design, and implementation of C&DH tasks

· Mark Stirling (Lead GSFC/588) Responsible for the oversight and integration of the OCA and OAI. Analysis, design, and implementation of C&DH tasks.
Appendix

‘99

Appendix

‘99

Plan / Progress

Goals
· Define concept and requirements.

· Investigate the feasibility of using newer/superior technologies onboard. Specifically, investigate using embedded Java and/or real-time CORBA onboard. Emphasis will be placed on real-time CORBA because of the standards for space objects being presented to the OMG by the SOTG.

· Select previous missions (i.e. MAP, GRO, TRIANNA) from which to base object oriented analysis for the proposed architecture. Acquire requirement specification documents as well as source code from the selected missions to begin analysis.

· Determine measurements of resource (CPU, network bandwidth, timing) utilization. Make modification to enhance performance while reducing consumed resources.

· Iteratively perform object-oriented analysis on the Command and Data Handling Subsystem based upon the requirements from the selected missions. Begin the process of modeling objects in UML based upon the requirements and available source code.

· Implement an IDL parser that will assist in the automatic generation of code.

· Identify tasks within the Command and Data Handling (C&DH) and Attitude Control (AC) subsystems that are good candidates for a simple proof of concept prototype.

· Begin design of framework. Framework should define roles and responsibilities for each component in an active end-to-end system.

· Design the selected C&DH/AC tasks using IDL and place them within a paired down framework.

· Implement the objects for the architecture using C++. Demonstrate a small working architecture that will ultimately serve as the basis for the addition of newer tasks.

· Continuously identify tasks within the two subsystems that may be integrated into the component architecture as components. Thoughtfully design each component in IDL then integrate those newly defined objects into the architecture.

· Identify autonomous tasks that may be implemented as reusable components within the architecture.

· Design and implement autonomy components and plug them into the architecture.

· Prototype a simulation of simple autonomy in flight software using the component architecture.

Milestones
	Milestone
	Planned Date
	Actual Date

	Concept Review
	7/99
	

	Phase I Demonstration
	10/99
	

	Phase II Demonstration
	02/00
	

	Phase III Demonstration
	05/00
	

�PAGE \# "'Page: '#'�'" ��

2
3

