Retrofitting CORBA Remote Method Invocation into MAP

Kevin R/GST/GSFC-588

Introduction

The MAP software system using message passing over a shared “BUS”, the software bus (SBUS). The messages take the form of a CCSDS message and have the following basic structure.

Typedef struct {

 seds_packet_header_type hdr ;

 // … //

} CCSDS_CMD;

// Where the hdr is:

typedef struct

{

 u_word packet_id; /* packet id */

 // … //

} seds_packet_header_type;

These messages are exchanged over the SBUS between tasks to perform work. Each task sends and receives messages by invoking a special interface to the software bus. Each message is tagged with a “SID” when it is sent; the SID is inserted in the packet_id field and is unique 16 bit number with a special format designated for the MAP software. For example, the SID for the 1HZ ticker task is 0x1815. This corresponds to this message being a “COMMAND” (0x1000), having a secondary header (0x0800), and being ‘ApID’ number 0x15. There are approximately 75 command and 114 telemetry messages used within MAP.

The SID is used to determine the route the message should take using a pre-compiled table. In a way the SID is a destination address that supports multicast.

The MAP port to CORBA uses this same architecture but replaces the shared memory implementation of the software bus with one based on the TAO Real-time Event Channel.

Functionally the two MAP SBUS implementations are similar but the TAO Real-time Event Channel implementation has the added benefit of supporting dynamic routing using the TAO Real-time Event Channel filtering mechanism.

The filtering is based on the SID contained within each message. SBUS ‘senders’ inject messages onto the SBUS tagging each one with SID, and SBUS ‘receivers’ register to receive SIDs through a special class library build on top of the TAO Real-time Event Channel interface. The built in message filtering mechanism within the TAO Real-time Event Channel then provides for the routing of messages between senders and receivers.

Replacing the message passing mechanism in MAP, either the original SBUS or TAO Event Channel version, with CORBA RMI is another twist on a potential architecture on-board CORBA architecture, and explores the major ‘service’ CORBA provides.

In order to easily retrofit this into MAP, it seems like the easiest thing to do will be to continue to make use of the SIDs to determine which task’s remote method to call. The SID is used to look up which remote method to call from table in the CORBA Naming Service.

Requirements

The requirements for CORBA RMI MAP are as follows:

1) Each task will have an abstract IDL interface representing remote methods that can be called to perform work by other tasks

2) Tasks may be both clients and servers. In RMI a client calls a server.

3) Many ‘clients’ in the standard message passing MAP make use of the multicasting capabilities of the SBUS. This feature must be supported or mimicked using CORBA RMI in some way.
Addressing Requirement #1: Abstract IDL Interface

All MAP tasks share a basic IDL interface. For simplicity purposes, this interface will mimic the message passing system at first, providing only a basic interface to pass whole messages. After successfully completing this version, the IDL interface will abstracted further based upon the lessons learned previously. It is not clear which technique will be better so that’s part of the experimentation. The IDL interface below is an example of how it will first be designed.

interface SubSystem {
 retval putTelemetry(in TEL_MSG tel);
 retval putCommand(int CMD_MSG msg);

 ...

 retval putGeneric(in GEN_MSG msg);

 retval getSubSysStatus(inout MAP_SubSysStatus status);

};

Addressing Requirement #2: Clients and Servers

Supporting both client and server RMI within a single task should be straightforward. After a server has initialized itself under CORBA, it must run the “ORB main loop” to process incoming RMI calls. This loop may be run in at least two ways. One is to run the loop and never return, and the second is to run the loop for a specified time and then do some other work, before running through the ORB loop again. In the second way, a specified ORB loop timeout provides a way to do additional non-CORBA work. So support for this requirement should be reasonably straightforward.

The only potential negative downside to having to be both a client and server is blocking of incoming ‘server’ calls because a task is busy calling some other remote method, and not processing the ORB main loop. However, this may only be a problem on a case by case basis, and there are several ways to solve it including: using the RMI time out feature to time out if a remote method has not returned after some designated time period, using Asynchronous Method Invocation (AMI), or starting separate thread for a remote call.

Each of these has various pros and cons, and adds varying amount of complexity to the code.

Addressing Requirement #3: Multicasting

Supporting multicast with RMI directly is not possible as there is not a “multicast” function call in C++ or CORBA. However, supporting the functionality using looping should be possible.

In order to accommodate using “available resources” within the current base, the SID will be co-opted into use with the CORBA Naming Service.

The Naming Service will be defined in such as way that each SID will be a directory of objects with a common interface.

Once the MAP servers complete the initialization of the Naming Service structure above, a client may look up any SID directory to find all the remote methods that “want” a particular client’s message, using that messages SID.

A class library build on top of the Naming Service interface will return the list of method handles, and the client will loop through them, calling each remote method with the client’s message data.

There are two issues that standout here. First, using the Naming Service means that remote handles can be looked up either dynamically as needed, or ‘statically’ during initialization. In the standard MAP software, most messages are statically defined so the SID never changes and is known at compile time. However some messages may be formed dynamically or the SID may not be known at compile time.

This implies that dynamic lookup may be necessary in some cases for CORBA RMI to match the needs of MAP. In other words, a client task may need to send a message, and the SID won’t be known until runtime. In order to find the proper destination, a dynamic lookup will have to occur to the Naming Service to find the proper remote method or methods.

While dynamic lookup of remote methods is flexible, it also adds costs to each call. For low performance or non-critical sections of MAP this may be fine, however there may be cases where the performance hit is not acceptable. Solutions to this problem including designing and building a lightweight high performance Naming Service which take advantage of the on-board architecture (such as shared memory), or figuring how to avoid the dynamic lookup at all which may be possible as this is not well understood at the moment.

Example for Requirement #3: The Servant Side

From the server/servant side, let's consider the TO sub-task. This is a pretty complicated task and it gets a lot of messages in the standard MAP software. To mimic functionality with the above-described Naming Service facility, making use of the message SIDs as Naming Service directory names containing lists of destination remote methods, and using RMI, the following steps should occur.

1) The TO task will start up and create its CORBA object with the IDL interface described in section #1. The TO task will implement this interface in its software as the server or “servant” in CORBA terminology.
2) For each SID the TO task expects to receive, it will call the Naming Service to create a directory entry as described in the above section using the SID of interest as a directory name. If the directory already exists, the remote method object IOR (CORBA remote method lookup ‘key’) will be placed in it. However, if the directory does not exist, it will be created and the IOR will be placed within it.

3) The TO task will then repeat steps 2 & 3 for all the SIDs it expects to receive, creating the directory structure described in the above section. The TO task has now completed its initialization phase for advertising its remote methods using the Naming Service.

4) The TO task now executes the ORB main loop function. It either does so by calling the “ORB run” routine and never returning, or by specifying a periodic timeout which will allow other TO code to be run, to issue RMI calls of its own or any additional work specified by its design.

Example for Requirement #3: The Client Side

The client side is the easier of the two sides to explain, mainly because it has less to do. However, not all MAP tasks will be “pure” clients, some will be both clients and servants. In that case, the task would first do the server side setup as described above. This example, however, only considers the simple case, the “1HZ” ticker task.

1) The client task initializes itself and executes. At some point it gets to a point in it execution where it must issue a message. The message is destined for some remote task or set of tasks as specified by the SID. In the case of the 1HZ ticker class, the 1 HZ timer has expired and series of messages must be sent out to several MAP tasks, the TO task is one of them.
2) The SID is stored in the Packet ID of each message, in this case the “1HZ message”. The SID is used by a special custom designed Naming Service class to lookup all remote method handles stored within the directory represented by it. The 1HZ task in this case uses the 1HZ SID when issuing a call to this class. The class returns a list of remote method handles. These are the “destination addresses” for that SID.
3) If the remote method list returned by the Naming Service is non-null, the 1HZ class will loop through the list, calling each remote method with the 1HZ message as input. Each call, initially will be specified with a timeout – although Asynchronous Method Invocation may be used as well. The main issue is to avoid blocking on the call and missing sending the 1HZ message to all the classes, as this is a critical system message.
4) Once the calls have been made, the return values are checked and the process begins again.

Conclusion

Retrofitting RMI onto the MAP message passing architecture should be relatively straightforward. However, getting the basic functionality working, which is a big step, and matching the real-time requirement precisely are two different things. For now, this project will continue to focus on matching basic functionality as a reasonable indicator of proof of concept.

“Root”

SID #1

S1 Obj 1

S1 Obj n

.

.

.

SID #N

.

.

.

Sn Obj 1

“Directories”

“Remote Methods”

