1 Description of SAVANT

2 How to use this document

3 Requirements

3.1 General Requirements

3.1.1 SAVANT shall allow the user to create visual, flow chart-like, programs or documents of web services

3.1.1.1 Web Services shall be defined to be distributed, server-based programs available on the internet or intranet

3.1.1.2 SAVANT shall support any web services which support Web Service Description Language (WSDL) and SOAP XML interface standards

3.1.2 SAVANT shall provide an Integrated Development Environment (IDE) for creation and execution of these documents

3.1.3 SAVANT shall allow the following operations in a document:

3.1.3.1 Web Service Operations

3.1.3.2 Flow Control (Branching, timing) Operations

3.1.3.3 Local (Plug-ins) Operations

3.1.3.4 Annotations (Post-it type notes)

3.1.3.5 Subdocuments (subroutines), which shall also be able to be executed in a loop

3.1.4 SAVANT shall allow the user to visually define the execution flow of a document by specifying the following connections (events):

3.1.4.1 Execute second operation when first operation STARTS executing

3.1.4.2 Execute second operation when first operation FINISHES executing

3.1.4.3 Execute second operation when first operation has an execution ERROR

3.1.4.4 Execute second operation when first operation is a web service which is currently unavailable

3.1.4.5 Execute second operation only when the first, branching, operation’s result equals some condition

3.1.4.6 Set the value of a parameter of the second operation to the value from a parameter of the first operation 

3.1.5 SAVANT shall allow the creation of a form, linked to the flow-chart document, for visual input and output of operations and their parameters through the use of standards components such as text areas, list boxes, check boxes, etc

3.1.6 SAVANT shall support the following operating systems

3.1.6.1 Windows 32bit on an Intel machine

3.1.6.2 Linux on an Intel machine

3.2 Development Environment (IDE) Requirements

3.2.1 The IDE shall allow the creation of visual, flow chart-like documents

3.2.1.1 The IDE shall allow creation of multiple documents at a time

3.2.1.2 The IDE shall allow copying and pasting of operations from document to document

3.2.1.3 The IDE shall allow the definition of input and output parameters for a document

3.2.1.4 The IDE shall provide an “object inspector” for inspecting and setting properties of the currently selected operation

3.2.1.4.1 The Object Inspector shall allow numerically inspecting and setting the location and graphical size of all operations’ flow chart boxes

3.2.1.4.2 The Object Inspector shall provide drop down lists of all allowed values for properties which are enumerations (such as color)

3.2.1.4.3 The Object Inspector shall provide drop down lists of all allowed values for properties which refer to other objects (such as other operations)

3.2.1.4.4 The Object Inspector shall allow adding, deleting, and changing connections (events and parameter connections)

3.2.1.5 The IDE shall display the web services and web service operations available

3.2.1.5.1 The IDE shall cache web service descriptions so that documents may be created using them even if they are temporarily unavailable or there is no network connection

3.2.1.6 The IDE shall display a palette or list of the flow control operations available to be dropped on a document

3.2.1.7 The IDE shall display the local plug-ins available

3.2.1.7.1 SAVANT shall provide a plug-in architecture for adding non-web service operations

3.2.1.7.2 SAVANT shall provide a core set of plug-ins:

3.2.1.7.2.1 FTP plug-ins

3.2.1.7.2.2 Email plug-ins

3.2.1.7.2.3 TBD

3.2.1.8 The IDE shall provide the following GUI operations

3.2.1.8.1 The IDE shall allow the user to drag and drop web service, plug-ins, annotations, and flow control operations from their respective location onto a document

3.2.1.8.2 The IDE shall allow the user to select an operation by clicking on it in the document

3.2.1.8.3 The IDE shall allow the user to move operations using the mouse about a document by clicking in the middle of the operation, holding the mouse button, and dragging

3.2.1.8.4 The IDE shall allow the user to resize Annotations using the mouse by dragging the borders of an annotation

3.2.1.8.5 The IDE shall allow the user to “draw” connections from one operation to the next

3.2.1.8.6 The IDE shall allow the user to “draw” parameter connections which connect a parameter (input or output) from one operation to an input parameter of the next operation

3.2.2 The IDE shall allow the creation of a form, linked to the flow-chart document, for visual input and output of operations and their parameters through the use of standards components such as text areas, list boxes, check boxes, etc

3.2.2.1 The IDE shall allow dragging and dropping visual components onto the form

3.2.2.2 The IDE shall allow the dragging and dropping of document operations onto the form and connecting it with a visual component on the form.

3.2.2.2.1 The IDE shall display a palette or list of the visual components available

3.2.2.2.2 The IDE shall provide output only (display) components

3.2.2.2.2.1 The IDE shall provide a label component, which may or may not be connected to a document operation

3.2.2.2.2.2 The IDE shall provide a list box component, which may or may not be connected to a document operation 

3.2.2.2.2.3 The IDE shall provide a charting component, which may or may not be connected to a document operation 

3.2.2.2.3 The IDE shall provide input/output only (display) components 

3.2.2.2.3.1 The IDE shall provide an edit box component, which may or may not be connected to a document operation 

3.2.2.2.3.2 The IDE shall provide a combo box component, which may or may not be connected to a document operation 

3.2.2.2.3.3 The IDE shall provide a memo (text area) component, which may or may not be connected to a document operation

3.2.2.2.3.4 The IDE shall provide a grid component, which may or may not be connected to multiple document operations

3.2.2.2.3.5 The IDE shall provide a check box component, which may or may not be connected to a document operation

3.2.2.2.3.6 The IDE shall provide a radio button group component, which may or may not be connected to a document operation

3.2.2.3 The IDE shall allow linking a document operation parameter to a visual component on the form

3.2.3 The IDE shall provide flow control operations

3.2.3.1 The IDE shall provide a timer operation for delaying execution:

3.2.3.1.1 The Timer shall be able to execute until an absolute time of day has passed

3.2.3.1.2 The Timer shall be able to execute until a certain period of time has passed since the start of the timer

3.2.3.1.3 The Timer shall be able to execute until a certain period of time has passed since the start of the document

3.2.3.2 The IDE shall provide branching operations
3.2.3.2.1 The IDE shall provide an IF operation (branching based on TRUE or FALSE)
3.2.3.2.1.1 The IF operation shall execute paths depending on the result of the condition

3.2.3.2.1.2 The IF operation shall be able to evaluate conditional expressions, which are defined by the user, based on inputs from other operations

3.2.3.2.2 The IDE shall provide a SWITCH operation (branching based on result state)

3.2.3.2.2.1 The SWITCH operation shall execute paths depending on the result of the conditions
3.2.3.2.2.2 The SWITCH operation shall be able to evaluate conditional expressions (based on inputs from other operations), which are defined by the user, to determine the result state
3.2.3.2.2.3 States shall be defined by the user

3.2.3.2.3 The IDE shall provide a FUZZY SWITCH operation (branching based on result states)

3.2.3.2.3.1 The FUZZY SWITCH operation shall be able to be in multiple result states simultaneously at different truth membership values (based upon Fuzzy Logic expressions)

3.2.3.2.3.2 The FUZZY SWITCH operation shall execute paths depending on the results of the conditions

3.2.3.2.3.3 The FUZZY SWITCH operation shall be able to evaluate conditional expressions (based on inputs from other operations), which are defined by the user, to determine the result states

3.2.3.2.3.4 States shall be defined by the user

3.2.3.2.3.5 The strength/truth membership value of each result state shall be available as output parameters

3.2.3.3 The IDE shall provide a Subdocument/Subroutine operation where the operation is the execution of another SAVANT document

3.2.3.3.1 Subdocuments shall be able to be executed multiple times in a loop

3.2.3.3.1.1 The loop shall be able to iterate a specified number of times

3.2.3.3.1.2 The loop shall be able to iterate until a condition is met

3.2.3.3.1.3 The loop shall be able to iterate until a Return or Halt operation occur inside the subdocument

3.2.3.3.2 Parameters shall be able to pass into and out of a subdocument to the calling document

3.2.3.4 The IDE shall provide a RETURN operation

3.2.3.4.1 Return Operations shall terminate execution of the current document returning execution to any calling documents

3.2.3.5 The IDE shall provide a HALT operation

3.2.3.5.1 Halt operations halt the execution of the current document AND, if the current document is being called as a subroutine operation, any calling documents

3.2.4 The IDE shall allow importation of web services

3.2.4.1 Imported web services are transparently imported into the IDE

3.2.4.2 Imported web services are available whenever the IDE is executed

3.2.5 The IDE shall allow the viewing scale of a document to be changed (independent of any other documents currently also open)

3.3 Execution Requirements

3.3.1 SAVANT shall be able to execute the documents from the IDE or from the command line

3.3.2 SAVANT shall automatically execute non-dependent operations in parallel

3.3.3 The user shall be able to halt execution of documents in the IDE

3.3.4 The user shall be able to step through the execution of documents in the IDE

3.3.5 The IDE shall reflect visually the execution status of operations

3.3.5.1 Operations shall have at least 4 states: non-executing, preparing for execution, executing, and execution error

3.3.6 Operation Parameter values shall be read from values set at design-time or queried from the user at run-time

