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1 Project Overview
Real time responses to fast changing natural events (e.g., Solar, Plasma, Magnetospheric, Ionospheric events) require an integrated cycle of data, information (metadata), and knowledge (meta-information):

1- Expectations about relevant signal classes, given a current Intention (knowledge goal).

2- Sensory data collection optimally configured to the current Intention.

3- Extraction of pattern classes in selected feature spaces (knowledge-poor data-rich, bottom-up applications such as classifier NNs, GAs, EAs, Bayesian etc.).

4- Transformation of sensory data (classifications, clusters, associations, trends, etc.) into a relevant prior-knowledge framework, transforming data into useful information (requiring knowledge-rich data-poor applications).  Data require a framework to be interpreted as information. 

5- Selection of the generated information for a purpose (the original knowledge intention, goals).

6- Autonomous decisions about the new Intention, given the new current percepts of the situation Autonomous updating of current beliefs, preferences, and intentions (leading back to 1). 

To enable the above information cycle, there are specific requirements:

-Points 1, 5, 6 require a high level of agency (autonomy, preference orderings, goals, deliberations).

-Points 2, 3 require integrated use of various sensory classifier methods (NNs, GAs, Probabilistic etc.),

 each optimized to a given expected class of signals (time series, images, spectra etc.).

-Point 4 requires the integration of inter and cross-domain ontologies and languages (KRLs)

 describing domain events (such as radiative, particle, and field events).

 The ontologies and KRLs must be homogeneous and compact for real-time applications. 

These requirements show the need to develop an agent architecture with the following 

characteristics:

- Vasts amounts of compression from sensory data, to prior domain information, to knowledge (using selected domain information for a specific current intention), enabling compact fast processing, and clear low-bandwidth communication of the situation with humans, and between multi-agents. 

- Independent, but integrated cognitive (prior knowledge, meta-information), reasoning (prior information, metadata), and sensory (data) engines.

- Integration of domain ontologies and KRLs and knowledge processing engines for each type of reasoning (deliberations, decisions, classification, deduction, induction, abduction, analogy, cooperation etc.)

- Integrated use of top-down deterministic knowledge-rich methods (meta-information, prior knowledge ; meta-data, prior information), with bottom-up stochastic data-rich methods (mining of sensory data).

- The integration of top-down deterministic guidance towards a current Intention, a knowledge goal,with the bottom-up creative stochastic solution searches.

-The use of more performant, more human forms of reasoning (differing from logics, problem-solving) that can serve as complementary back up, when situation novelty and data sparseness makes standard approaches fail.

-The use of compact communication language easily understandable by humans, to monitor and control the agent if/when need be, and for low-bandwidth inter-agent communication.

While satisfying all these requirements are out of the question for a project such as TOFU, they served as guidlines in the design of the S-Agent architecture, functionality, as well as for its ontology (QSMO), language (QSML) and knowledge processing (QSMP). 

The architecture of the S-class (Science) agents proposed in the TOFU project addresses

questions related to the following specific capabilities:

  -Autonomy is provided by providing domain information (metadata - expertise - 

   generic knowledge) frameworks to data in a consistent uniform manner.

  -To enable multi-agent (spacecraft, bots, instruments) systems to autonomously optimize their configuration, experimental capabilities, coordinate tasks in every given situation.

  -To autonomously optimize low-level short term coordination and decisions for the long-term high-level science mission goals in evolving environments/situations. 

  -To enable autonomous qualitative modeling of focused physical aspects of a given situation. The agent focuses on those aspects of any given situation of interest to its science discovery mission. 

  -To communicate compact models describing the situation in sets of short understandable statements.  This capacity optimizes bandwidth usage (metadata is communicated rather than data) and communication expediency and clarity. 

S-class autonomous agents could also be very useful for the automatic exploitation of large databases.  The agents feed on data via its Sensing and outputs simple models of specific aspects of the data.  An S-agent could seek the data it needs to create qualitative models of the aspects of the world it is focused on.  Those models, expressed as sets of simple statements, are compact and natural to human researchers, and can provide insights on the domain, by highlighting new chains of relationships between concepts.

2 Agent Design and Integration

2.1 Autonomous Qualitative Science Modeling (QSM) of Physical Events

The monitoring of natural physical events, such as space plasma events, can be used for several purposes including:

-Compression of opaque numeric data into clear, compact qualitative statements

-Recognition of basic processes (e.g., wave fields, discontinuities, particle distributions etc.)

-Integration of basic processes (e.g., waves, particle beams, plasmoids etc.) into more

 meaningful classes of events (e.g., Flares, CMEs, Clouds, Magnetic Storms, Shocks, etc.).

-Anticipating change of physical states (e.g., electromagnetic, particle, stability, etc.).

-Discovery of new combinations of unanticipated processes/events.

-Framing incomplete information: uncertainties, errors, gaps, ambiguities, imprecisions in data.

-Explaining environment situations to human operators, in compact understandable form.

-Providing a collective conceptual context for multi-agent systems.

-etc.

This information can, in turn, have a strong impact on multi-agent activities such as

-Situation awareness

-Positioning and Navigation

-Communication

-Detection

-Sensing

-Planning, Estimating Mission Capabilities

-Operations

-etc.

The efficient use of models of events requires integrated ontologies, languages,

and reasoning algorithms that are specifically designed for:

-Autonomy: for remote operations, in inhospitable environments and dynamic conditions.

-Efficiency: high-speed, low bandwidth usage, minimal compact messages

-Robustness: Error minimization, compact messages can be made more redundant cheaply.

-Simplicity: common ontologies, simple grammars, targeted knowledge engines, for efficiency.

-Expressiveness: complex and varied events must be describable by the qualitative models.

-Extensibility: for including broader domains, and integration into larger more complex systems. 

QSMs offer many advantages over numerical data, including:

-Compactness:  compression from numeric ranges, to qualitative quantifiers.

-Clarity: qualitative, easily understandable statements for humans.

-Fusion of metadata and data: merging of knowledge-rich and poor, data-poor and rich methods.

-Fusion of top-down deterministic guidance and bottom-up stochastic searches.

-Expressive: can describe complex ideas in compact manner.

-Extensible to cross-domain models and broader domain models.

-Intentional: QSMs enable decision-making intentional systems, with evolving knowledge goals.

-Collective Mindstate: a common context enabling cooperation without communication (multi-agents).

2.2 S-Agent Design

S-Agent was designed with maximal abstraction and generality to enable:

-Reuse for inter and cross-science domains

-Extensibility to various incarnations: database agents, web agents, autonomous bots.

-Cross-disciplinarity: cognitive sciences, AI, physics, engineering, etc.

-Scalability: a self-similar architecture suited for applications of various complexities

 from simple autonomous agent (where QSMO could be a few statements), to 

 knowledge discovery agents (requiring thousands of concepts). 

Also, an ideal autonomous science agent would be one that could operate 

under a wide range of situations:

-Knowldege-rich data-poor situations (best suited to top-down systems)

-Knowledge-poor data-rich situations (best suited to bottom-up systems)

-Situations with data gaps and errors, uncertain events, imprecise concepts.

-Time intervals of quasisteady predictible situations, with intermittent bursts of activity 

  and novelty.

To cope with Qualitative Science Modeling (QSM) requirements, one needs:

-a QSM Ontology that is both language-independent, and process-independent.

-a QSM Language that is process-independent.

-a QSM Process that has an engine for each type of knowledge process: mining, pattern 

 recognition, decision, learning, planning, deduction, induction, abduction, analogy, 

cooperation etc. 

The above requirements served as design guidelines during the construction of S-Agent's 

ROD, QSMO, QSML, and QSMP.  

To develop an autonomous system for doing qualitative science, four separate levels

had to be addressed:

1- Domain decomposition and definition (e.g., Physics, Plasmas, Waves, Electrostatics etc.)

2- Domain Ontologies (formal encoding of the knowledge about the domains)

3- Knowledge Representation Language (lexicon, syntax, semantics, pragmatics)

4- Knowledge Processing to obtain qualitative models of events, processes etc.

In the TOFU project, these four layers were addressed by

1- designing a Recursive Orthogonal Decomposition (ROD) of the agent's 'world'.

2- designing a core Qualitative Science Modeling Ontology (QSMO).

3- defining a core Qualitative Science Modeling Language (QSML).

4- designing a Qualitative Science Modeling Process (QSMP).

This was accomplished by the PI Siregar. 

To frame these four levels within a system, a science agent architecture was developed

by the PI, called S-Agent.  S-Agent's component make use of the four levels defined above using the following basic general architecture:

1- Three independent engines: Cognition, Reason, Sensing

2- Three main memory structures: Mindset, Mindstate, Ensemble.

3- Three conceptual contexts: Intentions, Reasons, Percepts

All the above work was done by the PI.   

A collaboration was done with the Co-I Prof. G. Luger and a student, K. Green (both from the Univ. New Mexico), on developing and comparing two Components of Sensing.  

These two are classifiers [5], [6]:

- A Learning Evolutionary Algorithm (LEA) using Fuzzy Logic and Genetic Algorithms

- A Probabilistic Learning Algorithm (PLA)

Classification is done on several classes of signals, represented as time series of various classes:

1- Stationary

2- Periodic

3- Quasiperiodic

4- Chaotic

5- Noises

6- Turbulence

7- Discontinuities

8- Precursors

Such classes could describe event features (e.g., E or B field components of MHD waves).

These classifiers would then output a brief statement of what is perceived, in the formal

message 'Percepts' output to Mindstate, as part of the conceptual Context.

A JAVA software package and papers on the classifier systems will be deposited to the NASA AISRP code repository. 

2.3 Agent Integration

S-Agent's architecture serves as a formal framework within which QSM can be understood.  These agent components integrate the four layers defined above, in the following manner:

-Cognition's (a BDI system) input is (Reasons, Percepts) and its output are formal Intentions.

-Reason's input is (Intentions, Percepts), and its output are formal Reasons (active concepts).

-Sensing's indput is (Intentions, Reasons, Data from the external world), and its output are

 formal Percepts.

-The QSMO is contained in Mindset (a long term declarative memory) used by Reason.

-The interpretations of active mindsets are done in Mindstate (a short-term working memory)

  using the current Situation (part of Percepts) and Intentions.

-A conceptual Context = { Intentions, Reasons, Percepts } resides in Mindstate: a collective conceptual context, that can be used by multiple agents to cooperate without communicating.  The Context is used to interpret all QSM statements, giving them an interpretation.

-The QSML operates in Mindstate, for interpreting statements, and tagging them for further knowledge processing QSMP. 

-An analogy engine called the Critical Analogy Toddler (CAT) was designed for doing

 the analogy part of QSMP reasoning (which would ideally include complementary forms

 of reasoning: Classifications, Deliberations, Deductions, Inductions, Abductions, Analogies etc.)

As an example, we could have the Sensing engine output the simple message:


Percepts  :=  ' TimeClass(BField)  =  Quasiperiodic ' ;

meaning, 'currently, the temporal class of the time series signal of the electric field is quasiperiodic'.

Sensing is typically a knowledge-poor data-rich process, requiring bottom-up approaches

well suited for such knowledge processing tasks.  To provide a meaning to Percepts, 

a knowledge-rich framework is provided by Reasons.  To provide a task orientation 

to the whole process, the current formal Intentions are used.   The Context = { Intentions,

Reasons, Percepts } provides a conceptual context within which all statements are interpreted.  This occurs in the short-term working memory called Mindstate.

3 Agent's Knowledge Levels

3.1 Cognition, Reason, and Sensing Based Architecture

The S-Agent class is based on three independent engines: cognition, reason, sensing,

corresponding roughly to, data, information, and knowledge processing.  A complete 

S-Agent would have the following traits:

- Cognition is a BDI [1, 2] system containing:

  -Engines for specific cognitive tasks: BeliefRevision, Decision, Deliberation.

  -QSMP engine for Recursive Orthogonal Decomposition (ROD).

- Reason containing:

  -QSMO in a long-term declarative memory called Mindset

  -QSMP engines for specific reasoning tasks: by inference, analogy (CAT)

- Sensing containing: 

  -An optimal sets of data mining rules, for each given signal class and type.

  -QSMP engines for specific sensing tasks: clustering, classifying, associating, trends, etc.

-QSML is associated with Mindstate, for interpreting all activated statements using the formal 

 context and preparing them for further processing (such as entering into competing qualitative 

 models in the model Ensemble.)

The three engines perform autonomously, communicating only via a formal conceptual context, 

called Context, in a short term memory called Mindstate ([1], [2], [3], [4]).   Each engine could 

operate on its own time cycle. 

-Some concepts in Reason's Mindset are activated by the current conceptual 

 Context = { Intentions, Percepts }.

-All knowledge-rich statements from Mindset are interpreted in Mindstate, 

 using the current conceptual Context = { Intentions, Percepts}.

-The current overall situation is evaluated by Cognition using the current conceptual Context = { Reasons, Percepts }. 

A Self object in Cognition holds invariant goals and beliefs as well as variable beliefs 

(updated by new sensory data) in its working memory.  This design separates of all 

computation into separate sensory, reasoning and cognitive threads, under control of 

Self which monitors current computations, along with science mission goal status.

3.2 Domain Decomposition and Definition - Recursive Orthogonal Decomposition (ROD)

An agent's external world W, is far too complex to handle in its entirety, even for agent's

such as humans.  For each sensing modality, a selection of key features are preferentially 

processed for the agent's needs. S-Agent accomplishes a selection of part of its

world, by a process called Recursive Orthogonal Decomposition or ROD [3], [4].  

-ROD reduces ambiguity by reductions to homogeneous knowledge domains.

-ROD reduces the domain complexity to manageable units, in a context-dependent manner.

ROD means that the world is looked upon at given (space, time, energy) scales, 

and from a particular science micro-domain vantage point (e.g., electromagnetic properties 

of plasma waves - or the micro-domain QSMO.PHYS.WavesMHD.Electromagnetic). 

The ranges chosen for the scale domains, determine the Granularity of the physical world.

Large ranges for each scale, gives a coarse-grained decomposition of the world. 

The optimal choice of ranges adopted, depends on the application.

In S-Agent, all processing depends on a formal conceptual 'Context' (environment Situation, 

current Beliefs, Intentions), including ROD's choice of Scales and Domain).  

The optimal coarseness of domains used generally depends on the current Intention (application 

at hand).   For example, for the intent of deciding which for instrument bandwidth priority is 

given (say magnetometer versus particle detector), broad domain separation may be adequate 

(say PhysicsPlasma, PhysicsElectromagnetism,  PhysicsStatistical).  But for the intent of 

modeling an observed wave a finer domain decomposition can be optimal (say 

PhysicsWavesMHD.Electrostatic, PlasmaWavesMHD.Electromagnetic).

ROD constrains the semantic, by providing pragmatc formal Context to a statement.

The Scales, and Domain specified by ROD provide a context to interpret a statement,

resolving semantic ambiguity.   

Such Domain Decomposition to Situation mapping can be done simply by a Dictionary

of Contexts, including a default hierarchy for un-anticipated situations.  More elaborate

versions might include machine learning of these mappings.

-The Scales (Space, Time, Energy) selected by the ROD, are variables entering the agent's 

 formal Intentions.

-The Domain selected by the ROD, enters in the agent's formal Intentions.

-The System selected by the ROD, enters in the agent's formal Intentions.

Intentions are part of a conceptual Context, used to remove semantic ambiguity, specifically

the System and Domain remove referential ambiguity, the Scales remove contextual ambiguity in active statements.  Ambiguity removal provides an interpretation of each QSM statement. 

3.3 Qualitative Science Modeling Ontology (QSMO)

A good qualitative model of a science domain can only be well interpreted or understood, 

by knowledge of the constraints on the meaning and usage of the words of the domain.   

Different domains can assign different meanings to the same word. 

Models of a given science domain are expressed in a standard language (English), and a 

sublanguage (the mode of speech proper to the specific science domain at hand).   The 

domain-specific sublanguage is identified by six main features:

-The reference science domain (with its own concepts symbols and structure)

-Restricted access to a subset of lexical items, syntax, semantics (compared to the Standard

 Language)

-Domain specific constructs not licenced in the standard language (lexical, syntactic, semantic 

 licences).

-Domain -specific favored and frequent constructs.

-Adherence to domain-specific text structure or organization.

-Domain-specific symbols.

Lexical words (nouns, adjectives, verbs) are more domain-dependent than functional words (articles, conjunctions, prepositions).  The semantic range is more restricted within a domain, than in the standard language.

In defining domains, it is important to maximize reusability, by making explicit and extensive use of domain-independent common objects, properties, and relationships. 

An analysis of a given domain includes:

-Study the domain objects, properties, relationships.  Build a domain dictionary. 

-Study the frequency distributions of lexical items by statistical analysis of the domain. 

-Study the lexical particularities of the domain sublanguage.

-Study the syntactic favored and disfavored constructs in the domain sublanguage.

-Study the semantic particularities of the domain sublanguage (e.g., lexical item clusters)

-Study domain-specific strategies for ambiguity-resolution, parsing, classification, inferencing etc. 

-Analyze the domain into a set of purpose-dependent topics: questions, requests, features, values, 

-Study topic-specific solutions to knowledge processing problems. 

Domain definition provides added lexical, syntactic, semantic constraints in the domain sublanguage, compared to usage in the standard language.  On the other hand, domain definition will also allow domain-specific constructs not allowed by the standard language. 

Knowledge understanding, sharing and reuse are primary goals of ontology research. 

The purpose of developing a domain QSMO is:

-To design ontologies for reuse: cross-disciplines and cross-domains

-To make domain assumptions explicit

-To seperate domain knowledge from operational knowledge (QSMP)

-To analyze domain knowledge

-To share common understanding 

-To have a language-independent representation of domain knowledge

-To have a task-independent representation of domain knowledge

-To enable different forms of knowledge processing on the same formalization

-To provide default values for gaps, missing or incomplete information

Basic questions for ontology design are:

-What is the domain of the ontology?

-What is the ontology going to be used for (purpose)?

-What types of questions should the ontology provide answers to?

-What are the domain concepts?

-What are the domain concept class and class hierarchies?

-What are the domain concept properties (slots)?

-What are the constraints on the properties (value types, allowed values, number of values, 

 domain, range)?

-What is the naming convention for concepts etc.?

Criteria used for QSMO development were:

-Ease of use and reuse

-Scalability

-Expressiveness

-Extensibility

QSMO's Knowledge Representation (KR)

Imporant QSMO Requirements were:

-Design specific for Qualitative Science Modeling QSM

-Design for inter and cross-disciplines (inter and cross-domains) reuse.

-Uniform structure for scalability, extensibility, reuse, and human understanding.

-Rich and abstract enough to describe science models of any complexity (Scalable).

-Abstract (general enough) to enable different types of knowledge processing over 

 the same QSMO.

-Specific to remove semantic ambiguity.

Indeed there are many ontologies on the market, but none fits all these requirements, 

and thus the need for developing QSMO. 

These requirements were met using the following QSMO design, as well as its language 

QSML (see below) [3], [4]:

-QSMO is designed as a scope (generality, abstraction, depth) hierarchy of concepts.

 This enables inter and cross-domain reuse.

-All basic atomic QSMO concepts are statements expressing relationships (Uniformity)

-All QSMO statements belong to one of nine ontological types (Scalability, Specific).

-All QSMO statements are organized into more complex structures called QSMO mindsets.

-All QSMO statements have a specific meaning (formal semantic tags), but no specific 
 interpretation (provided by formal Context and Intentions in Mindstate).

-Each QSMO statement has a tag specifying: ontologic type, scope, activation, and neighbors.

The QSMO scope hierarchy enables for example, statements from QSMO.PHY.Atomic,

to be used by QSMO.PHY.Plasma, QSMO.PHY.Radiation, QSMO.PHY.Atmospheric

The scope hierarchy is also used during knowledge processing (reasoning).  For example, in analogical processing QSMP, models using more abstract concepts (greater scope) are favored over models using more concrete concepts (lower scope). 

The partitioning of QSMO statements into nine ontological types (Categorical, Spatial,

Temporal, Causal, Physical, Logical, Mathematical, Incompleteness, Information) has 

several key properties:

-Abstract: such general types can accurately describe models in any science discipline.

-Logic Factorization: each reasoning, inferencing, analogy, etc can be limited to the ontology 

 type. This endows QSMO with good scalability.

-Specific: removal of semantic ambiguity of each statement.

-Explanatory: semantic specificity makes explanations/understanding easy.

-Reuseable: statements with greatest scope can be reused over greater cross-domain ranges.

The tags on each QSMO statements are used for knowledge processing (mining, inferencing, 

analogy etc.).   For example, each statement in Mindset has an activation level and a formal

semantics specified by the tags.  Active QSMO statements are transferred to the Mindstate

for processing (interpretation, reasoning), which includes functionally changing the numerical tags.

In summary each QSMO statement: (typically a predicate statement)

-has specific meaning (semantics).

-has a semantic tag: specifying its semantic type, and class (parent mindset).

-has an activation tag: which changes depending on the current conceptual Context.

-has a scope tag: inherited from its parent mindset.

-has a neighbors tag: inherited from its parent mindset.

-lacks a specific interpretation: which is performed once in the mindstate, using a Context.

3.4 Qualitative Science Modeling Language (QSML)

In the TOFU project, the PI Siregar developed a language QSML to represent the QSMO, 

and provide an explicit representation for QSMP engines to process. 

QSML is composed of words and rules (Lexicon and grammars) for using them.   The main 

difficulties associated with language processing / understanding are due to ambiguities.   

All sources of ambiguity must be removed from a language to make it precise and 

understandable.

The five main levels of ambiguity in a language are:

1- Lexical ambiguity arising from multiple possible meanings for a word.

2- Syntactic ambiguity arising from the sentence structure.

3- Semantic ambiguity arising from the sentence having multiple possible meanings.

4- Referential ambiguity arising from not knowing what the sentence refers to (intention).

5- Pragmatic ambiguity arising when a sentence can have different interpretations, 

    depending on the context in which it occurs.

Important QSML Requirements were:

1- uniformity, clarity and compacity of all QSML qualitative statements

2- simplicity, but natural language-like grammar for easy human understanding

3- removal of all ambiguity sources at different levels

4- computational efficiency of QSML syntactic, semantic, pragmatic analyses.

5- richness to express adequately complex qualitative models of all science domains.

In the formal QSML, the five levels of ambiguity are minimized due to:

- Precision of the QSML science lexicon (ambiguity source 1).

- Use of a simple uniform QSML sentence structure (ambiguity sources 2 and 3).

- Specification of a 'System' to which all QSML statements refer to (ambiguity source 4).

- Specification of a 'Context' providing the pragmatics for all QSML statement interpretation 

  (ambiguity sources 3 and 5).

Language processing generally occurs in three steps: 

1- Syntactic analysis, generate a parse tree of the sentence, using a syntactic grammar.

2- Semantic analysis, using a semantic grammar (e.g., QSML's case grammar) to specify 

    the most likely meaning of a statement. 

3- Pragmatic analysis, using the statement's conceptual context and intention. 

The QSML grammar (as does any syntactic grammar) has three components:

1- Terminal Symbols: words of a Domain Lexicon

2- Nonterminal Symbols:  


-Lexical categories of the words (Noun, Verb, etc.)


-Syntactic categories: allowed combinations of lexical categories


-Special Symbols: start, end, separation etc. 

3- Syntax Rules: rules specifying the valid word combinations. 

All QSML statements have a few simple uniform valid forms (cases) such as:


Context; Predicate(Tags; X, Y) 

Syntactic Analysis: all core QSML statement follow this syntactic rule of construction.

The Tags provide the semantic constraints for the statement, to which any interpretation 

must obey.  Syntactic analysis can boil down to a simple context-free grammar. 

The QSML syntactic rules are:   

1- Productive: they specify strings of word types, rather than actual specific words.

    This property enables the assembly of new statements. 

2- Symbolic: it specifies the statement structure in terms of symbols.

    The grammar is thus abstract. 

3- Combinatorial: each slot position in an allowed statement form, allows a choice of words.

    A four variable statement allows a vast number of combinations forming specific statements, 

    most of which are nonsensical. 

4- Recursive: a statment can contain another statement in it.  It can thus generate a statement 

    of any length, and thus enables to express an infinite number of distinct ideas. 

The QSML grammar is thus rich enough to express complex ideas (requirement 5), yet simple 

enough to eliminate sources of ambiguity (requirements 1, 2, 3), and enable QSML processing 

efficiency (requirement 4). 

The syntactic analysis of a QSML statement would use:

1- QSML grammar: declarative knowledge of QSML specified above.

2- QMSL Parser: procedure that compares any input QSML statement, 

    with the QSML grammar.

Most syntactically valid statements would be meaningless, generated by simple combinatorics, 

and recursion.

Semantic Analysis: determines the meaning of a statement, which can depend on the Context,

and occurs at two levels:

-Lexical level: word meaning in the Lexicon.

-Sentence level: meaning of each word within the Context of the sentences in which it occurs.

This requires a Semantic Grammar, such as a Case Grammar.  The QSML has a simple 

Case Grammar, built from a few simple cases such as:


Context; ActionZ (agent(X), object(Y) ) 

or 


Context; Predicate(Tags; X, Y) 

means, 

in the Context,  the agent X performed action Z, on the object Y, or

in the Context, X Predicate Y.  

It is a recursive grammar since X and Y can themselves be Predicate statements.  

For example 


LeadsTo(Tags; DepletionOf(EnergyFree),StabilizationOf(Instability))

The case grammar focuses on the semantics, ignoring the syntactics.  A case grammar relies on

cases, describing relationships between verb phrase (predicates) and their noun phrase (subject).


Context = { Intentions, Reasons, Percepts }



where




Intentions = { Scales(Space, Time, Energy), Domain, System }




Percepts   = { current Situation }




Reasons   = { current active mindsets and concepts}

the standard QSML statement with the form:


Context; Predicate(Tags; X, Y) 

is interpreted as,


In situation S, X of system - Predicate - Y of System, at scales Scales, for domain D,


because of Reasons. 

This QSML case grammar generates simple, humanly understandable statements (requirement 2).

The Context provides the pragmatic analysis, for interpreting the statement Predicate(X, Y).

Specifically, the formal Context removes referential, semantic, and pragmatic ambiguity.

3.5  Qualitative Science Modeling Process (QSMP) 

QSMP engines can be designed for different purposes, including:

-Cognitive processing: belief updating, decisions, deliberations.

-Linguistic Processing: NLP, Parsing under grammar rules, argument evaluation etc.

-Mining: clustering, classification, association, or trend in data features etc.

-Inferencing: deduction, induction, or abduction

-Analogical Reasoning: target domain to source domain mappings

-Perception: pattern identification in some feature space.

-Cooperation: mulitple agents cooperating on a current goal. 

Important QSMP Requirements are: (these stem from the needs of autonomy in agents)

1- To provide a framework (a formalization of the scientific method) within which creative processes (e.g., induction, analogy), are cross-checked with rigorous methods (e.g., deduction, model verification). 

2- To unify knowledge-rich data-poor top-down approaches (such as logic or rule-based systems).

    with knowledge-poor data-rich bottom up approaches (such as in data mining).

3- To take advantage of deterministic top-down guidance, with stochastic bottom-up searches. 

Each type of QSMP will generally require a seperate engine, tailored for that type of processing, 

but all QSMP types can function over the same ontology (e.g., QSMO), and possibly the same 

KRL (e.g., QSML).

QSMP can proceed in two directions:

1- Bottom-up data-driven processing.  Used when a lot of data is given, but the goal is unknown

    or ill-formulated.   This can be the case in data-rich knowledge-poor situations. 

2- Top-down hypothesis-driven processing.  Used when goals or hypotheses are easy to generate.

    This can be useful in knowledge-rich data poor situations.

The optimal choice depends on the number of givens and goals.  It is usually best to go from

the smaller to large number, because it is easier when there are fewer initial possibilities to consider, and more final possibilities to reach.  In complex situations, an optimal mixture of the two approaches is needed.   This is the case in the CAT analogical engine (see below). 

QSMP generally proceeds with some uncertainty, imprecision, error, and gaps in the data or 

knowledge.  Methods for dealing with various forms of incompleteness a include:

1- Non-monotonic reasoning: using a Truth Maintenance System for all facts in a KB.

2- Probabilistic reasoning describing event likelihoods using networks.

3- Fuzzy logic for handling imprecise data or concepts.

4- Certainty factors using measures of beliefs and disbeliefs in competing hypotheses. 

5- Analogical thinking: high-level conceptual perception using maps between source and 

    target domains.

6- (Shannon) Entropy as a measure of missing information, and a minimal entropy principle. 

For analogical QSMP, the CAT engine uses a mixture of 5 and 6 in a unique manner. 

In Addition, the QSMO has a separate 'Incompleteness' type of statements, to facilitate

the processing of incomplete data and knowledge.  

In QSMP because of the complexity of the science domains (fluid atmospherics,

space plasmas, radiation etc.) to be tackled by a science agent, complexity scaling, knowledge

consistency, and ambiguity would prove a strong impediment for using more standard AI methods such as expert, logic based, rules based, probability network based approaches. Bottom-up mining approaches (such as neural nets, probabilistic networks, support vector machines, 

genetic algorithms etc.) are successful in knowledge-poor data-rich processing.  But mining

methods do not take advantage of most of science's knowledge-rich background, and thus 

require a 're-invent the wheel' approach to science knowledge extraction. 

In this project, we have come to the conclusion that analogical thinking (as opposed to thinking 

as reasoning, problem solving, or logic) should form an important component of any autonomous 

science agent.  It is a complementary approach that may prove to be more robust and with better 

scaling properties than other AI knowledge processing methods.  Humans tend to use analogy as 

a backup under extreme cases, in complex domains, when novelty is great and other thinking 

approaches fail. 

Nature has evolved thinking systems (human and animal brains) that make extensive use of analogy in thinking.  Analogy is a natural evolutionary extension of perception.  In Fact, it can be thought of as a form of high-level conceptual perception, as opposed to low-level sensory perception.  Analogy as high-level perception, merges target domain sensory percepts, with higher previously acquired source domain concepts.  The mapping between the target to source domain forms the analogical processing by the agent. 

In the TOFU project, the PI has developed the foundation of an analogy engine called, the Critical 

Analogical Toddler or CAT.  CAT forms S-Agent's analogical engine, working over the QSMO and QSML. CAT operates by mapping prior knowledge source domains, to a given sensory target domain of interest. Knowledge-rich metadata (encoded as the source domain ontology in QSMO) is thus merged with sensory target domain data.  The blend of data and metadata, is used to build competing and cooperating (coopeting) qualitative models of given classes of events (e.g., plasma waves) in the target domain.  The coopetition between qualitative models, is mediated by critical dynamics - the dynamics of critical phenomena.  Many properties of the human brain itself, suggest that it may operate under a critical state. 

Critical dynamics was chosen for its ability to maximally re-organize ideas on all scales of magnitudes: from frequent small reorganizations (tiny discoveries), to rare comprehensive reorganizations (big discoveries). Ideas are expressed as the qualitative models mi of the target domain, in an ensemble M of coopeting models.  Ideas with high levels of uncertainty (missing information or Entropy) tend to get reorganized, under CD, while those with low entropy tend to be more stable and survive in invariant manner.  Reorganizations in the 'fabric of ideas' M, propagate along supercritical paths (paths of highest entropy) that ubiquitously thread 

through M.  For this to occur, the ensemble M must be maintained in a critical state.  The best models selected by critical dynamics, are those emerging with lowest entropy at the end of the CD cycles.  Those models form the agent's best analogical explanations of the target domain situation at hand.

4 Research Impact and Future Objectives

In the TOFU project, we developed an architecture (S-Agent) to enable QSM in a science

domain (e.g. plasma events).  To do so, a set of representations and processes needed to be 

designed for addressing the different levels involved in the development of any intelligent system:

QSM was addressed on four fundamental levels:

1- Knowledge domain decomposition and definition: ROD

2- Knowledge domain ontology: context-free and task-independent QSMO

3- Knowledge representation language: QSML 

4- Knowledge processing engines: QSMP analogical engine CAT, Probabilistic Classifiers.

These four levels must have a seamless fit.  ROD and QSMO are task and language independent,

but QSMP engines must be suited to the QSML.  So QSML was designed to be suitable for 

different QSMP types (analogy, mining, induction etc.). 

The QSM designs were guided by the need to express any qualitative science model, in any given 

science domain.  This requirement stems from the fact that, even within a domain (e.g., plasma waves), other domains are likely to be invoked in modeling events (e.g., radiation, statistical physics).  For example, a good qualitative science model of a given set of phenomena, 

includes statements concerning categories, space, time, causality, physics, logic, mathematics, 

incompleteness, and information.  These nine ontological types of statements are a natural decomposition in the QSMO. 
The QSMO's semantic tags also provided the scope of each statement, defining its generality or depth.  The analog modeling processing (Critical Dynamics) favors the use of concepts with greater scope.

S-Agent's architecture involves three engines, messages and memory systems:

-Three engines: Cognition, Reason, Sensing ouput conceptual contexts. 

-Three messages: Intentions, Reasons, Percepts define a conceptual Context. 

-Three memory structures: Mindset (concept types), Mindstate (concept tokens), Ensemble M.

The contextual messages are a formal Context, used to interpret statement semantics.

Ideal concept types from the Mindset, become concept tokens (instances) when interpreted

within the Context in Mindstate.  The Context provides the pragmatics needed to constrain the 

possible interpretation of the statement semantics.  The Context also provides the common object a set of multiple agents can use to cooperate, without the need for explicit direct communication.

The ensemble M, is the set of cooperating/competing qualitative models of the target domain 

under study.  In CAT, the coopetition is mediated by Critical Dynamics. 

The NASA TOFU project succeeded in producing:

-S-Agent design and functionality

-S-Agent's Sensing engine's feature classifiers for 6 signal classes (in collaboration with U. 

 New Mexico). 

-designing a core cross-disciplinary QSMO

-constructing a core QSML

-a core design for QSMP analogical engine: CAT
Summary of Future Objectives

-To develop the shareable cross-domain QSMO, with its scope hierarchy.

-To develop the QSML (using a KR such as XML schema), with dialects oriented for various 

 QSMP types.

-To build QSML syntactic, semantic, and pragmatic analyzers. 

-To study analogical mappings between source and target domains.

-To develop a QSMP engine, for each (complementary) reasoning type, starting with the 

 CAT analogical engine. 

-To build an actual QSM agent for a very restrictive micro-domain (e.g., space science plasma 

 discontinuities).
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Appendix I - CAT Terminology

CAT Design & Architecture

CAT is based in three independent engines (Cognition, Reason, and Sensing) and three memory structures (Mindset, Mindstate, Ensemble). For each engine, its input is the output from the other two engines.  Cognition outputs current Intentions (a set of n-plexes expressing current goals), Reason outputs current Reasons (a set of n-plexes from active mindsets representing the analogy sources), and Sensing outputs current Percepts (a set of n-plexes representing the current target domain).  There is thus a symmetric information feedback between the three engines.  

Cognitive Stresses

Cognitive stresses in CAT arise implicitly, from various explicit sources including the OptEnt principle, Critical Dynamics (CD), Entropy, the Context, and cognitive impasses.  The various coexisting implicit stresses drive CAT’s behavior.  For example, cognitive stresses in the Ensemble M, are due to local Entropy gradients, and trigger Mindquakes along pathways that are supercritical. Stresses in Mindstate drive models towards greater abstraction and scope. 
Context

A set of n-plexes held in the Mindstate, and composed of n-plexes from Intentions, Reasons, Percepts, and Situation (within the target domain).   The conceptual Context is itself continually evolving, and influences the meaning of concepts, and the stresses driving the interactions between Mindset, Mindstate, and Ensemble.  The Context can be viewed as both the cause and consequence of competing cognitive stresses driving the analogical processing in CAT.  The agent’s conceptual Context in Mindstate, involves three levels: data (Percepts), information (Reasons), and knowledge (Intentions).  
Ensemble M

Ensemble or set M(s) of cooperating and competing (coopeting) models m(s) representing a given target domain s.  M(s) holds coopeting high-level perceptions of the given target domain s.  A model m(s) is a structured set of n-plexes, with its neighborhoods defining a topology T.  A space (M, T) forms a topological space associated with a topology T, induced on M by the neighborhoods of its n-plexes.  An underlying d-lattice Ld is associated with M, and connects the models m(s) along pathways.  The ensemble M is ubiquitously threaded by unstable pathways of varying degrees of instability because it is maintained in a SOC state.  Supercritically unstable pathways undergo reorganizations (mindquakes) that propagate along these instability threads.  Such reorganizations embody the coopetition between the individual models m(s) in M.  The criticality parameter p, sets CAT's ratio Curiosity (exploration)/Conservatism (invariance) in M, or equivalently the critical entropy level Sc, above which, pathways become critically unstable.  M can be viewed as an information source, having a coarse entropy S(M), and fine entropies S(m). 

Entropy S(M)

In CAT, entropy is undestood in the sense of a Boltzmann/Shannon information [21], and measures uncertainty. In CAT, the model ensemble M is viewed as an infomation source, whose entropy S(M) is maximized (macro-level MaxEnt(M) for mental experiment setup), so that when a mental measurement/experiment is made, the data (sensory data from Percept) resolves a maximum amount of uncertainty (micro-level MinEnt(m) for individual models m).  Sensory percepts minimize a maximal amount of entropy (uncertainty) of the models representing the target domain s.  MaxEnt(M) and MinEnt(m) drive opposite stresses in the ensemble M, a bottom-up random exploratory stress MaxEnt(M), and a top-down deterministic selective stress MinEnt(m).  CAT contains a dynamic mix of top-down and bottom-up processing.  Over time, Critical Dynamics creates stable n-plex structures emerging within the models m, and within the ensemble M.   The stable structures are islands of high scope low entropy, in a sea of low scope high entropy.  These stable n-plex structures are CAT's best current high-level perception of the target domain s. 

Mindquake

The model ensemble M is CAT’s fabric of ideas, and is maintained in a SOC state of high cognitive stresses.  When stresses in the fabric of ideas become supercritical, a mindquake releases the stresses to subcritical levels.  A mindquake propagates along supercritical pathways in M (more specifically, the lattice L associated to M).  A reorganization of the model m_ij at each site (i, j), where the model's entropy S_ij  is supercritical S_ij > Sc.  The reorganization means transporting some n-plexes in the model m_ij, to its neighbors.  In this manner, all models in M lying along supercritical paths get reorganized (a mindquake).  Since the ensemble M = { m_ij } of models m_ij, is maintained in a SOC state, it is threaded by supercritical paths (fingers of concept instability), constantly poised for reorganization.  M can be viewed as a fabric of ideas, threaded by cognitive stresses, that constantly trigger instabilities, mindquakes, of all magnitudes.  Small mindquakes occur frequently, while large ones are rare.  This interaction between neighboring models in M, along supercritical paths, embodies the coopetition between concepts to construct relevant, deep and stable analogies between source and target domains.  

Mindset

A long-term memory containing the set of all domain mindsets, both inactive static ones, and active dynamic mindsets representing a source situation for the analogy. Mindset is the set of ideal static concept types (as opposed to ephemeral concept tokens existing in Mindstate).  Mindset hold mindsets as alternative views of high-level concepts, given a context.  Mindsets have dynamically adjusted activation levels, most being dormant, a few being maximally activated at any given instant.  Active mindsets activate neighboring mindsets, dynamically creating neighborhoods of mindsets (concepts).   Mindset activity also decays in time, with shallow concrete mindsets decaying fastest, and deeper more abstract mindsets decaying slower.  The dynamically evolving stable activated networks of mindsets represent the high-level perception (the representation) of the source domain.

mindsets

Models (structured sets of n-plexes) representing basic components of source situations for an analogy.  There are nine sub-types of mindsets: categorical, spatial, temporal, causal, physical, logical, mathematical, incompleteness (uncertainty, imprecision, error), and information type mindsets.  Mindsets can compete and cooperate to represent situation source for the analogy.  Initially, relevant mindsets are activated by the initial Context (Intentions, Reasons, Percepts, Situation) in the Mindstate.  These initially activated mindsets will tend to be shallow sensory percept related, since they are activated by them.  This initial batch of mindsets will then tend to activate other mindsets of greater scope (depth, abstraction, generality), and place them into the Mindstate. 

Mindstate

A short-term working memory where n-plexes from active mindsets in Reasons (information), from sensory Percepts (data), and from Intentions (knowledge) converge, providing a conceptual Context from within all analogical processing occurs.  It is similar to a blackboard structure, and ephemeral contains concept tokens, instances of permanent concept types.   The active n-plexes in Mindstate are elements of multiple competing and cooperating viewpoints (mindsets) about high-level concepts, with varying degrees of activation levels.  Each n-plex has a dynamically evolving dominance within Mindstate. 

Model

A representation of a (source or target) domain s.  The domain s, is called a 'System', which is itself a given slice of CAT's current world W.  The system s is a reduction of the world W (by a process called Recursive Orthogonal Decomposition or ROD) to managable size, pruning most of Mindset, focusing searches to small numbers of mindsets, at any given instant. 

n-plex

A systematic term for nodes, edges, graphs, polygons etc. is a n-simplex or n-plex.  A node is a 0-plex, an edge is a 1-plex, a 2-plex is a face or polygon, etc.  The model ensemble M is a topological space, called a mathematical complex.  The neighborhoods in M are defined by the n-plex connectivity.  Homology theory deals with algebraic relationships among n-plexes in a complex. In the ensemble M, each n-plex is assigned an entropy (in bits) corresponding to its uncertainty.  Sensory n-plexes have low (or zero) entropy, since they come from real external world target domain.  By contrast, n-plexes originating from the Mindset are more uncertain (higher entropy), and their assigned entropy depends on their activation level, their sensory support level, their dominance and other factors.  As n-plexes from the Mindstate are progressively added to lattice site (i,j) where a model m_ij resides, they become part of it, adding to the total entropy S_ij of the model m_ij.  

OptEnt Principle

The optimal entropy principle in CAT, working within Critical Dynamics (CD) in the model ensemble M.  OptEnt maintains M in a self-organized critical (SOC) state of maximal entropy, while using Pecepts data to minimize the entropy of good models m(s) of the target domain s.  The macro-level entropy S(M) is maintained maximal, while the micro-level entropy S(m) is minimized (hence, OptEnt).  These competing stresses statistically give rise to the emerging stable n-plex structures (deep low entropy models) in M.  The usefulness of OptEnt can be understood in terms of the classic 'coin problem', where there are n identical coins with one being defective.  The problem is to identify the defective one using a minimal number of weighs using a balance scale.  The idea for a solution is to set up the experiment (information source) with maximal entropy, so that each measurement resolves a maximal amount of uncertainty, reducing the entropy maximally. 

Perception

Low-level sensory perception is represented as a set Percepts, containing n-plexes output from a data mining engine called Sensing.  Percepts contains statements of classes, clusters, trends, associations etc. output from mining data of a target domain s.   In CAT, high level perception involves representations (models) of both source situations (mindsets) and a given target domain s, currently under focus. In CAT, high-level perception, situation understanding and analogical thinking are all synonymous. 

ROD (Recursive Orthogonal Decomposition)

A scale-decomposition (space, time and energy scales) is done recursively on the agent's current world W, to bring it down to managable complexity.   For example if W = an Atmosphere, a system s can be a vertical slice of the atmosphere, on convection scales, at mid-altitudes, during winter over a period of a day, focusing on thermal-gradient driven bulk fluid motions.  The ROD is done in scales, space (location, extent, orientiation, line, surface, volume, etc.), time (date, phase, era, durations), in domain, and in type (categorical, spatial, temporal, causal, physical, logical, mathematical, incompleteness, information).  A system s thus describes a very narrow slice of the agent's current world W, and it is this system s that is the analogy's target domain.

Self Organized Critical (SOC) State
The ensemble M is maintained in a SOC state with a self-adjusting critical parameter p, defining the critical entropy Sc(M), above paths in M (or its underlying lattice L) become unstable and undergo mindquakes.  Mindquakes can be viewed as 'mental avalanches' or 'mental earthquakes' triggered by fingers of instability constantly threading the entire fabric of ideas M.  In a SOC state, the mindquake magnitude is essentially unpredictable individually, but collectively follow a power law frequency distribution.  Small mindquakes (tiny reorganizations or discoveries) are frequent, medium ones occur sometimes, large ones (paradigm shifts) are rare.   The key point here is that there is no fundamental difference between mindquakes of different magnitudes.  So in CAT tiny discoveries (which follow from tiny reorganizations of models m(s)) are essentially the same as mental revolutions or paradigm shifts, except that the latter are rare.   The essential ingredient for these reorganizations is that the fabric of ideas M exists continually in a SOC state.  The SOC state could be a fundamental aspect of the brain's information processing state. 
Appendix II – CAT Model Characteristic Properties

-In connectionism, concept are not localized and symbolically represented, but emerge from memory, out of a large number of simple elements.  In CAT high-level concepts can have several points of view called mindsets.  Each mindset of formed of elementary concepts called n-plexes.  The relevant mindset depends on the current context in which the analogy is made. Each mindset is a context-free core meaning for a concept, but the choice of relevant concept mindset depends on the current context for the analogy.  For example, the meaning (mindset) of concept 'LowFrequency' will depends on the context's 'Scale' at  which the analogy is being made.

-A concept mindset's activation level A, is a function of the mindset (concept representation), the percept  data, and the context: A(concept mindset) = f (mindset, Context).  In this manner, the context C influences the relevance of an interpretation of a high-level concept.  Furthermore, an active mindset has has a decay  rate over time, and induces the activation of near neighbor mindsets.  For example, the meaning (mindset) of concept 'LowFrequency' will depends on the context's 'Scale' at which the analogy is being made and the activated concept 'LowFrequency' can activate the neighboring  concept 'LongWavelength', within the context of 'Waves'. 

-Permanent concept types (such as the idea of a 'Wave') exist in a long-term memory (called Mindset), while ephemeral instance of concepts, or concept tokens, exist in a working memory (called Mindstate).  Abstract concept types belong to various levels of abstraction, depth or scope.  In principle, all concepts in Mindset are available at all times, but in practice, the vast majority remains inactive.  At any given moment, only a few Mindset concept are fully active, and a few more are mildly active.  This property enables CAT to scale well in complexity with richer applications.

-Concrete concept tokens or instances in Mindstate can have various degrees of complexity. These concepts can have varying degrees of dominance in Mindstate.  Most are dormant, but a few are dominant at any given time.  This property enables a good scaling-up of CAT with more complex applications.

-Complexity Scaling: although no concept or pathway is strictly ruled out, in practice, only a few are serious candidates at any given time.  This is true in the Mindset, the Mindstate and the ensemble M.  At any given instant, CAT focuses on small manageable sets of concepts and search pathways. However, this small set of active, dominant, and compelling concept, and search pathways is continually changing under the stresses governed by critical dynamics CD.  

-Emergence of models representing a given target domain, by combining mindset elements from models representing several source domain, with sensory percept data.

-Initial apparently irrelevant source models (mindsets) can become relevant under cognitive stresses to understand a target domain (and vice versa). 

-CAT will not seek seemingly totally non-relevant source models (mindsets), unless there are strong cognitive stresses to do so, but will activate dormant mindsets when there is an unusual pressure to make sense of the target situation.  The activated initially irrelevant mindsets are closely related to the stresses that activated them. 

-Non-deterministic micro-level bottom-up decisions, deterministic high-level top-down decisions.

-There is a potential, but low probability, of coming up with non-sense modeling pathways, to allow for the flexibility of finding non-trivial hidden but insightful pathways.

-Deeper, more abstract concepts (greater scope), once uncovered become more robust in proportion to their scope.  These are sources of more interesting, deeper analogies between source and target domains. Concept drifts are driven by cognitive stresses, and their propensity to undergo drifts depends on their scope.

-Cognitive impasses (when there are no good emergent models of the target situation) are handled by increasing the critical parameter p = Curiosity/Conservatism = entropy S(M).  This broadens the search to activate dormant knowledge, previously seemingly irrelevant ideas (mindsets) now become relevant.  Impasses thus create stresses pushing for broader exploration along defined directions.  An impass is thus a cue signaling the need for broadening the search. 

-Small discoveries (small changes of target model from analogy source models) or big discoveries (paradigm shifts where the model of the target situation is vastly different from the analogy sources) are of the same nature (mindquakes).  Small mindquakes occur frequently while large ones are very rare (power-law frequency distribution).

Additional CAT Traits 

· Intermediate model between high-level symbolic and low-level connectionist models.

· Simultaneously symbolic and sub-symbolic/connectionist.

· Operates symbolic objects (n-plexes) in a connectionist manner (self-organized critical dynamics)

· Temporal integration of perception (target System) and analogical mapping (target system - source mindset)

· Micro-level randomness used at the service of macro-level determinism.

· Macro-level deterministic decisions.

· Initial phase randomness, late phase determinism

· Maintain a potential for poor pathways to maintain flexibility

· Guidance to avoid the poorest pathways most of the time

· Percept pressure to evoke dormant mindsets (concepts) to make sense of a situation.

· Continuous spectrum from tiny discoveries to paradigm shifts.

