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Introduction

Data mining is an active area of research in both the business and scientific communities.  Automated methods of classifying objects in large databases are typically divided into two types:  supervised learning and unsupervised learning.  Supervised methods use a labeled training data set to “teach” an algorithm to recognize certain types of objects.  Unsupervised learning, also called clustering, uses no training data, but allows the algorithm to find the “best” division or partitioning of objects into a set of classes.  While supervised methods can put objects into known classes, they have the drawback of not being very good at discovering new classes of objects.  Conversely, unsupervised methods can partition data into classes that are not biased by our scientific assumptions of where things should be.  This can result in a set of classes that do not really help us understand the physics behind the groupings.  

Our AISR project is focused on using a combination of supervised and unsupervised methods to achieve better results, i.e., lower classification error rates, than can currently be achieved using either method alone.  Because most currently available astronomical data is unlabeled and it is expensive to label it, using a mixture of labeled and unlabeled data to boost performance is enticing.  Moreover, semisupervised learning leaves open the possibility of discovering new classes in the data.  
Summary of Progress

Our research for the past year has been focused on a particular algorithm originally developed by Co-I David Miller.  We have modified the algorithm so that it now works well with the astronomical data sets we have been investigating.  We have looked at ESOLV data, a 5000 object data set consisting of 5 classes of galaxies used previously in several studies of supervised learning.  We have also used SDSS early release data, a 50000 object data set containing photometry of galaxies, quasars, stars and other objects totaling 7 classes.  
The details of our progress are presented in a paper just submitted to the Astrophysical Journal, a preprint of which is available at astro-ph/0406323 .  This article describes the algorithm and the results we obtained when using the algorithm on the ESOLV data and the SDSS data.
Major Accomplishments

We applied the semisupervised algorithm to ESOLV data and the SDSS data.  We designated either one or two of the object classes to be the “unknown” classes.  This means that during the learning phase we did not use any object from the “unknown” classes in the training data and during the testing phase, during which we evaluated the performance of the algorithm, the objects from the “unknown” classes were given a different class label.  During the learning phase the labeled data were supplemented with unlabeled data.  During the testing phase, the algorithm was required to classify the objects from known classes into the correct classes and to discover any new classes (the unknown classes) that might be there.  

The following table summarizes the results presented in our paper.  The Data/Method column lists the data set used and the method used to determine the best mixture model for the semisupervised algorithm.  C1 means that Criterion 1 error was used to determine the best model.  Criterion 1 error is a measure of how many objects from known classes were classified to unknown classes and how many objects from unknown classes were classified to known classes.  This method was applied to both the semisupervised mixture model and the neural network.  BIC is the Bayesian information criterion.  This is a method of choosing the lowest C1 error while penalizing a model for being too complex, i.e., having too many mixture components.  Thus, BIC will decrease as the classification error decreases but increase as the number of components in the mixture model increases.  BIC does not require knowledge of the classes of the “unknown” objects, while using C1 error for model selection does require this knowledge.  Thus, BIC can be used with real data where truly unknown classes exist.  

Ncomponents  is the number of mixture model components (number of Gaussians) used in the best model.  
MM Error and NN Error are the Mixture model error and the neural network error for the given data set and model selection method.
(% is the average change in error from neural network to mixture model.  If the (% is negative that means that the mixture model did a better job than the neural network.  This percentage improvement cannot be calculated from the data in the table.  It is, rather, an average over all the different models that we ran.  Some models gave over a 50% decrease in classification error, and one was as high as 96%.

	Data/Method
	Ncomponents
	MM Error (%)
	NN Error (%)
	(%

	ESOLV C1
	34
	22
	28
	-20

	SDSS C1
	61
	1.9
	12
	-57

	ESOLV BIC
	61
	27
	28
	+10

	SDSS BIC
	71
	4.2
	12
	-21


The summary table shows that except for ESOLV BIC, the new semisupervised mixture model approach gave significantly better classification results than the standard supervised neural network.
Details are given in the paper and are not reproduced here.

Problems and Issues

No significant problems were encountered this year.  Some issues regarding how the algorithm works with large data sets, in particular some convergence issues, took some time to figure out.  These are discussed in the full paper.

Plans for the Upcoming Year
Our next step is to use a modified version of this algorithm to look at the same data and some galaxy merger data.  The modified algorithm eliminates some internal parameters that have to be set in the method we used to produce the results discussed here.  

We will be comparing this method to some other supervised clustering methods we are developing.
