High-Speed Access for an NVO Data Grid Node
Maria A. Nieto-Santisteban, Aniruddha R. Thakar, and Alexander S. Szalay, William O’Mullane, Tamas Budavari, George Fekete and Nolan Li, Johns Hopkins University

We had identified the following objectives in last year’s annual report for this project:

1. Build a parallel compute cluster using the Condor software.

2. Add VOTable compatibility to our web services.

3. Implement registry of our Web Services using emerging NVO registry standards.

4. Investigate parallelization of data access to SQL databases using distributed partition views (DPVs) and other techniques.

5. Design and build a Grid portal for our data access component.

We have met the first three of these objectives and are close to achieving the fourth.

· Our Condor cluster is in operation and available to the GriPhyN community on the IVDGL grid – Grid3.

· We have added VOTable compatibility to the following services on http://www.voservices.net:

· SIAP – Simple Image Access service

· Cone Search – radial search service

· Spectrum – access to over 500k spectra from SDSS DR1 and 2dFGRS

· Filter Profile – access to a database of nearly 100 photometric filters

· CASService – access to the SDSS Catalog Archive Server (CAS)

· VO-enabled Mirage – enhanced Mirage functionality with VOTable

· CasJobs – batch query service for the SDSS CAS.

· We have also set up a VO registry at JHU (also available on www.voservices.net) that implements an OAI interface and harvests OAI repositories.

· We have designed an algorithm that performs spatial partitioning of the SDSS catalog database and uses the partitioned data to speed up an astronomical galaxy cluster finding algorithm. This effort is described in more detail below.

1. Finding BCGs with Partitioned SDSS Data

Using a zone based approach [Gray et al.], data get distributed among several servers allowing parallel execution of the same application on different partitions. We have developed a SQL version of the Finding Galaxy Cluster algorithm implemented by Jim Annis [Annis et al.] with the goal of testing and benchmarking our partitioning approach. This algorithm identifies galaxy clusters in the data and finds the Brightest Cluster Galaxy (BCG) in each cluster. The original version was running on the Terabyte Access Machine (TAM), a grid cluster set up in Fermilab composed of 10 computers. We have demonstrated that using databases technologies and a 3-node SQL server cluster we can process the same area of the sky 20 times faster and with higher accuracy.

1.1 Finding Galaxy Clusters

The algorithm includes five main steps:

1. Get Galaxy List
fieldPrep: Extracts from the main data set the measurements of interest.

2. Filter
brgSearch: Calculates the unweighted BCG likelihood for each galaxy (unweighted by galaxy count) and discards unlikely galaxies.

3. Check Neighbors

bcgSearch: Weights BCG likelihood with the number of neighbors.

4. Pick Most Likely

bcgCoalesce: Determines whether a galaxy is the most likely galaxy in the neighborhood to be the center of the cluster.

5. Discard compromised results

getCatalog: Removes suspicious results and produces and stores the final cluster catalog.

1.1.1 TAM Implementation

The implementation running on TAM approaches this problem by dividing the sky in 0.25 deg2 patches and processing each of them separately on a single CPU. This implies creating 2 files per each patch, one 0.5 x 0.5 deg2 TARGET to compute the likelihood of each galaxy and another 1 x 1 deg2 BUFFER to look for neighbors within some radius. Ideally, BUFFER should cover 1.5 x 1.5 deg2 to find all neighbors within 0.5 deg and weight properly the likelihood of each galaxy to be the center of the cluster. However, the system cannot afford such a big buffer and only 0.25 deg is provided.

In order to determine the search radius, the algorithm uses a lookup correction table mapping magnitudes, redshifts, and searching distances. This table has 100 rows with redshift values between 0 and 1 in steps of 0.01. A Candidates file, C, is produced after this step.

In order to determine which galaxy is the center of the cluster, nodes must interchange information about candidate neighbors. Ideally, each node should know about all the surrounding candidate neighbors within 0.5 deg, but once again TAM can only afford considering four (N, S, E, W) and discard the candidate neighbors on the corners (NE, NW, SE, SW) [Figure 1]. Resolving a TARGET field of 0.25 deg2 requires about 1000 s on each of the 600 MHz PIII that compose the TAM cluster. The time scales lineally with the number of fields being computed. TAM is composed of 10 machines processing 0.5 x 0.5 deg2 fields in parallel.

	
[image: image1]

	Figure 1. Surrounding C files provide a searching radius close to 0.5 deg for candidates near the border. Corners are not considered due to performance issues.

1.1.2 Parallel SQL Server
We have implemented the same algorithm (Steps 1-4) and included two main improvements:

· we use a finer lookup table with redshift steps of 0.001 (vs 0.01 for TAM);

· we provide the 0.5 deg buffer surrounding the target field that would be prohibitively expensive in the TAM version.

TAM would require 20–30 times longer in processing the problem with these two improvements.

The SQL implementation can run either on a single CPU (SQL Server) or a cluster. When running in parallel, the data distribution has been arranged so each server is completely independent from the others. We achieve this by duplicating some data and processing on different servers. The duplicated computation is insignificant compared to the whole work involved when processing big volumes of data, or equivalently, big areas of the sky.

[image: image2]
	Figure 2. Data distribution among 3 SQL Servers. Total duplicated data = 4 x 13 deg2. Total duplicated work (1 object processed more than once) = 2 x 11 deg2.

We have processed a target area of 66 deg2 [Figure 2.] and compared the performance between the SQL Server cluster and TAM [Table 1].

	SQL Server cluster
	TAM cluster

	Resolve a Target of 66 deg2 using 3 SQL Servers dual 2.6 GHz.

For 0.5 deg buffer and z-steps of 0.001:

T = Max (TS) = 2 h 15’

	Resolve a Target of 66 deg2 using 10 nodes 600 MH PIII.

For 0.25 deg buffer and z-steps of 0.01:

T0.25, 0.01 = 7.3 h

Scaling to 0.5 deg buffer and z-steps of 0.001:

T0.5, 0.001 = 7.3 h * 25 = 7.6 days

Dividing by 4 to adjust the CPU speed:

T 0.5, 0.001 ~ 2 days

	Table 1. Using a SQL Server grid we solve the same problem 20 x faster

2 Future work

In addition to completing the remaining objective from last year’s list – providing a grid interface to the partitioned data so that it is accessible to grid applications – we aim to pursue the following steps towards developing a general purpose scalable data access facility.

· Generalize the algorithm to deal with empty areas and boundaries (Step 5).

· Set up the system to be able to register and manage tasks and transactions so if the process fails we don’t have to reprocess the whole database.

· Experiment with spatial partitioning in the RA axis. Current work has been done using the declination axis. However, it seems the RA axis would allow us to do bigger areas in parallel.
· Incorporate the partitioning algorithm into our data import pipeline, sqlLoader, so that the data is partitioned as it is loaded into the database.
3 References
[Annis et al.] Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey. Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S. and Foster, I., in SC'2002, (2002).
[Gray et al.] There Goes the Neighborhood: Relational Algebra for Spatial Data Search Jim Gray; Alexander S. Szalay; Aniruddha R. Thakar; Gyorgy Fekete Fekete; William O'Mullane; Gerd Heber; Arnold H. Rots; Maria A. Nieto-Santisteban. MSR-TR-2004-32.

Applying a zone strategy, P gets partitioned homogenously among 3 servers.

S1 provides 1 deg buffer on top

S2 provides 1 deg buffer on top and bottom

S3 provides 1 deg buffer on bottom

P

P3

Native to Server 2

P2

P1

Native to Server 1

Native to Server 3

T

C

C

C

C

C

C

C

C

C

[image: image3.png]