OpenSkyQuery: SkyQuery becomes an IVOA standard
Ani Thakar, William O’Mullane, Tamas Budavari, Alex Szalay, Nolan Li, Tanu Malik, Vivek Haridas

In this final report, we describe how we have transformed SkyQuery (www.skyquery.net) – the prototype distributed query and cross-matching service that we developed for this project – into an interoperable IVOA (International Virtual Observatory, www.ivoa.net) standard service called OpenSkyQuery (www.openskyquery.net). This is the natural evolution of SkyQuery. In addition, we are in the process of developing an innovative caching scheme for data-intensive network queries called bypass caching. These developments are described below.

OpenSkyQuery

OpenSkyQuery is an effort to extend SkyQuery and make it more open. With SkyQuery, to be a SkyNode, one has to implement a set of web interfaces, some of which require .NET technology. The original prototype has proved the idea but it was time to bring this in line with VO efforts and to make it properly platform independent. OpenSkyQuery opens up the SkyQuery protocol to enable other databases and servers to become “Full SkyNodes”. These Nodes could then be utilized by a new implementation of the SkyQuery Portal (described below).

Open SkyQuery Portal, IVOASkyNode, ADQL and VOQL

[image: image1.png]later
VOQL Portal

High Level Language allowing
seemingly uniform access to services.

VOQLQuery

Registry —
also
Register
SKYQL| Q
IVOA SkyNodes
Lower level ADQL (including
/4 3 .3 Q regions) and services to Support
Clients VOQL.
May use Services at
any level

Open SkyQuery Portal | End 2003
Uses only Registry and full SkyNodes.

SkyQuery iSkyQuery|

[WebApp / N

D EBgg

Figure 1. Architecture

The Astronomical Data Query Language (ADQL) is an XML document format for transported queries to IVOA SkyNodes. Different SkyNodes may not support all features of the Language (see the Matrix below in section 7.1). Hence ADQL would be passed from the SkyQuery Portal to the SkyNodes or it may come directly from a client or the VOQL portal. All nodes and the portals should be accessible via SOAP services. The boxes on the nodes in Figure 1 represent SOAP methods.

Additionally for the Open SkyQuery Portal some form of string based query like the current SkyQL (www.skyquery.net) would be accepted. A parser would easily convert this to ADQL i.e. SKYQL would have the same semantics as ADQL but the syntax would be an SQL like string rather than XML. The Portal would use the registry to resolve server names for LEV3 and LEV4 servers and make the Execution Plan (see Section 6 below) and pass it on to the first node in the plan setting up an execution chain as in the current SkyQuery portal..

Finally the Virtual Observatory Query Language (VOQL) is an ambitious language at a higher level than ADQL. A VOQL portal would take VOQL programs. This would need all the work of the SkyQuery portal and more to make it function.

In summary we may see 3 layers of VOQL :

· VOQL1 Web Services: ADQL and VOTABLE to exchange information between nodes

· VOQL2 Federation: SQL-like query language and federation system, i.e., combination of SkyQuery , JVOQL and VO standards.

· VOQL3 SkyXQuery: future XML-based query language.

Standard Interface

1. SkyNodes implement the services outlined in the standard interfaces specification [STDIF].

IVOA SkyNode Interface

Feature Matrix

The following matrix tries to categorize features and SkyNode/ADQL Levels. Basic SkyNode is the minimum IVOA SkyNode Interface – this is useful in itself as it allows one to send queries to a system using ADQL. This is also just one step up from cone search. Any feature on its own may be useful – a node that can do XMATCH is already useful even if it may not participate in the portal because it lacks other features. It is assumed large surveys would be Full SkyNodes as footprint services should make queries more efficient on the large surveys.

	Feature
	Basic SkyNode
	Full SkyNode
	Optional

	ADQL – circle
	X
	X
	

	Functions
	X
	X
	

	Xmatch
	
	X
	

	Performance Query
	
	X
	

	Takes exec plan
	
	X
	

	Footprint – Region intersect
	
	X
	

	MYDB
	
	
	X

	Authentication – must have with MYDB
	
	
	X

This table is meant as a summary, more explicit requirements are detailed below.

IVOA SkyNode Interface

The skynode interface requires several methods to work. Several of these methods are for Metadata – in this case we need to know about Tables and Columns that may be included in a query. To facilitate interoperation we will also need to be able to get UCDs and units for each column. ADQL also exposes standard ways for querying metadata but it seems sensible to have explicit WebService calls for this also.

Another service will need to take an ADQL document and return a VOTable of data. The current incarnation of ADQL syntax supports only queries which would return data i.e. there is no provision for Data Manipulation Language which would have no data to return.

We split the requirements in two sections – the minimum set required to be a skynode, called Basic, and more advanced requirements aiming toward complex portal creation. It is assumed nodes will exist in the spectrum between these extremes. The Functions interface allow the node to specify precisely what it supports.

Basic Sky Node

2. SkyNodes shall register with the registry with type=”OpenSkyNode”
We need to add a new SubClass of VODescription for this – there will be other metadata we need which is specific to OpenSkyNode i.e.

· SkyNodeType : Basic, Intermediate, or Full

· AcceptsUCDs : True or False

Specifying AcceptsUCDs means theat a query may be specified using UCDs – this is not a requirement and shall probably not become one, specifying the metadata simply allows experimentation with this idea. UCDs do not carry unit information so although it makes sens to use a UCD to request a column it is unclear if this is useful in specifying the predicate of a query – here one would need to know the unit and type of the native SkyNode column to specify the query correctly.

3. SkyNodes shall implement the “Tables” interface, which returns a list of all tables that may be used in ADQL passed to this endpoint.

4. SkyNodes shall implement the “Columns” interface, which returns information about the columns of a given table name. This shall return an array of MetaColums this structure shall contain the Column Name, Type (as in SQL type), Unit, Precision (number of significant digits), Description, and UCD.

5. SkyNodes shall implement the “Formats” interface. This takes no parameters and returns a list of formats which this Node supports for Query Results. Hence this may return VOTable,DataSet,ASCII.

6. SkyNodes shall implement the “Functions” interface, which returns an array of MetaFunctions this structure shall contains the function name parameter list and comments for all extra functions this node supports. This also implies a new ADQL subclass which contains these functions (some technical work needed here).

7. SkyNodes shall implement the "PerformQuery" interface, which takes an XML document including an ADQL query and an optional string parameter called “format”. Fomrat must be one of the strings listed from a call to the "Formats" interface. This returns a document including a single appropriate IVOAResult, which is the result of processing the query. IVOAResult shall be an abstract class with multiple subclasses, one for each format. SkyNodes shall support at least VOTable format.

8. SkyNodes should accept the VOQL equivalent of Standard SQL-92 Metadata [SQL92] queries . These queries include (expressed here as SQL but would be ADQL/XML coming to the node):

Select * from tables

Select * from colums

We need to decide how much of the entire set is relevant and required. Since most Dbs handle this we could just say all of it. The syntax may be a little different in each database i.e. in SQL-Server this is

select * from information_schema.tables

While ORACLE does not support Information Schema (as far as the author can tell).

Full SkyNode requirements

9. SkyNodes shall implement the QueryCost() interface that takes a simple ADQL query to return the object density per square degree for a set of criteria.

A particular survey with uniform density may choose to not run this as a full query but rather perform the query on a much smaller area or use statistics or heuristics. Basically this does not have to be 100% accurate – it is an indication only, so it is better that it completes quickly. On the other hand, theoretically, in some databases if the full investigative query were run then it will cause the data for the real query to be cached. The idea here is to determine the volume of data that would be returned from the specified query. This allows nodes to be ranked in the correct order for a Xmatch.

10. SkyNodes should accept complex Shapes in their queries as defined in the ADQL syntax (using the Region specification).

11. SkyNodes should be able to perform cross matching between their survey and table of data provided in VOTABLE format. The method XMatch() takes an ADQL structure and a set VOTables.

An example of the SkyQL (which would be expected in ADQL format):

select ...

 from SDSS:PhotoObj o, EXT:0 my1, EXT:1 my2

 where XMatch(o,my1,my2) < 3

Note that this allows you to cross match VOTables without referring to any database table, i.e. it is a general cross matching tool.

12. SkyNodes shall implement an ExecutePlan() web method, which takes an ExecPlan and passes the relevant part of the plan to the next node. From that node it shall receive a VOTABLE of results. If there are no more nodes in the plan it simply executes the ADQL query and returns the resulting IVOAResult. The return type shall be specified in the plan at each step. The logical node and physical replicas shall be sent with the plan. The ExecPlan structure containing the portalURL the plan came from, the format the output is required in, and an ordered array of PlanElements. The PlanElement strcture shall contain the statement (ADQL document) the Target for this element (a logical node name) and an ordered array of hosts (physical nodes which should behave as the logical name – there may be only one). The order of the hosts should be in most preferable first, this is of course form the portal perspective – a node may decide to rerank the nodes for itself or simply send a quick query to all mirrors and take the first which responds.

It is not clear how clever the nodes need to be for parsing. Ideally the portal will prepare ADQL, which is good for the node to execute.

13. SkyNodes should implement the footprint service. This would take a region specified in the region XML and return a new region that is the intersection of the survey and the given region. The Region specification has the ability to deal with Spectral and Temporal footprints also, this implies a node should be able to deal with these entities. Currently, we know how to deal with regions, but have not really dealt with Temporal nor Spectral overlaps.

Bypass Caching: Making Scientific Databases Good Network Citizens

Introduction

Bypass caching is a novel, altruistic caching framework for scientific database workloads. It adopts network citizenship as its principal goal -- caching data in order to minimize network traffic. It profiles the workload to differentiate between data objects for which caching saves bandwidth from those which should not be cached. The latter are routed directly to the server.

There are several challenges in developing and adopting this technique:

1. How to find an algorithm that optimally balances recency and frequency

2. When to make the bypass decision such that network savings are maximized

3. What object representation to cache such that cache space is utilized to its maximum.

Progress to date

1.
We have developed the mathmatical model for the bypass-yield problem.

2.
We have developed a family of algorithms for cache revocation (such that there is balance between recency and frequency) and algorithms to make an intelligent bypass. We consider deterministic (i.e., with a competitive ratio of k), randomized and rate-based algorithms.

3.
We have tested the efficiency of our algorithms on various sizes of objects. Currently, we chose objects corresponding to schema definitions, i.e., tables and columns. In the future, we also plan to evaluate against semantic objects, i.e., queries. Our intuition is that schema objects will work better than semantic objects.

4.
We are currently carrying out a workload analysis of the SDSS queries.

Future tasks

1.
Report the caching results in a conference paper.

2.
Report the workload analysis in another paper.

3.
Develop the bypass-yield model for a federation of databases such as Skyquery

4.
Integrate the bypass framework to cache execution in the skyQuery.

References

1. “SkyQuery – A Web Service Approach to Federate Databases”, T. Malik, T. Budavari, A.S. Szalay, and A.R. Thakar 2003, Proceedings of the 2003 CIDR (Conference on Innovative Data Systems Research) Conference, P17.

2. “Open SkyQuery - VO Compliant Dynamic Federation of Astronomy Archives”, T. Budavari, A.S. Szalay, T. Malik, A.R. Thakar, W. O’Mullane, R. Williams, R. Williams, J. Gray, R. Mann, and N. Yasuda, ADASS XIII, ASP Conference Series 2004 (F.Ochsenbein and M.Allen, eds.), in press.

3. “Build Your Own SkyNode!”, N.Purger, A.S. Szalay, T. Budavari, A. Thakar, and I. Csabai, ADASS XIII, ASP Conference Series 2004 (F.Ochsenbein and M.Allen, eds.), in press.

1
1
RE: NRA-00-01-AISR-035

