ASPEN Evaluation Report

Jeff Robinson

Commerce One

e-Government Solutions, Inc.

November 8, 2001

Brief Description

The Goal Oriented Command Generation (GOC) team has been tasked with developing the Solid State Recorder PLayback Automation Tool (SPLAT) to automate the scheduling of Solid State Recorder (SSR) data playbacks for the TERRA Spacecraft as the first phase of the GOC project. The Automated Scheduling and Planning ENvironment (ASPEN) was selected as the scheduling engine for GOC project, and SPLAT tool. The goals of the first phase of the GOC project (SPLAT Tool) were to gain an understanding of the ASPEN system and to demonstrate its usefulness in a real-world prototype.

The purpose of this document is to describe briefly the operation of the ASPEN system, document the lessons learned during development, describe the deficiencies identified during development of the SPLAT tool, and provide general thoughts on the ASPEN package.

What is ASPEN?

The Automated Scheduling and Planning ENvironment (ASPEN) is an object-oriented planning and scheduling system written in C++ and developed by the Artificial Intelligence Group (AIG) at NASA’s Jet Propulsion Laboratory (JPL).

ASPEN provides an expressive modeling language, the Aspen Modeling Language (AML), through which the user defines the spacecraft operation as a series of Activities, States and Resources: Activities represent an action or step in a plan (An example of an activity from the SPLAT tool is an ASTER buffer playback). States represent the state of a subsystem or resource over time, and Resources describe or profile a physical resource over time. Note that ASPEN supports three different types of resources, they are: atomic (on/off), depletable (diminishing capacity), and non-depletable (fixed capacity).

The AML describing spacecraft operation is specified in model (.mdl) files that contain activity (activities.mdl), state (state-variables.mdl), and resource (resources.mdl) definitions. These model files contain activity definitions (operations, reservations), temporal constraints amongst activities, resource capacities, state values and state transitions affecting the activities.

Whereas the model files define activity, resource, and state transition behavior, the instance files define specific instances of activities or resources to be placed on the individual timelines. In other words the instance files contain specific instances in time of the activities defined in the model files. Instances files are created for all resource and state timelines as well as for activities to be placed on the timelines.

Once the model and instance files have been created, they are loaded into ASPEN either on the command line or via the Java GUI client. In either case, the loaded model and initial schedule files can be processed into a schedule using the forward dispatch command to place the activities out on the timeline and the repair command to iteratively repair any schedule conflicts.

Repair can take on many forms in ASPEN. The schedule can be manually repaired through operator intervention (by adding, deleting or moving activities). Or, the schedule may be repaired by through one of the many repair algorithms available in ASPEN. These repair algorithms attempt to fix schedule conflicts by iteratively selecting random conflicts and attempting to repair the problems using a predetermined set of heuristic functions. Note that advanced users can create their own heuristic functions but this requires an intimate knowledge of the ASPEN software architecture.

Schedules generated by ASPEN can be saved, reloaded, modified, and stored to disk in several different formats. The activity, resource, state and timeline instances can be saved to a flat ASCII file using the general “save schedule” option. Saving the schedule in this way causes the ASPEN server to store the currently loaded schedule in AML to a flat ASCII file (schedule.ini). ASPEN also allows the user to save schedules or portions of schedules in a user specified format to flat ASCII files via the “Save commands” command. This method allows users to customize the schedule output, printing out only what they need and in a format they specify. The desired activities, resources, etc. are formatted according to the layout specified in the command format file (commands.fmt). Each entry in the command format file contains an activity name followed by information describing how to format the activity. Note that the command format file is provided to ASPEN at server startup or during a project load.

For a more detailed description of ASPEN, please refer to the ASPEN User’s Guide Version 2.0 or one of the many papers describing ASPEN on the ASPEN web site at

http://www-aig.jpl.nasa.gov/public/planning/aspen/aspen_index.html.

Continuous Planning with ASPEN

CASPER (Continuous Activity Scheduling Planning Execution and Replanning) provides a real-time continuous planning, scheduling, and re-planning extension to ASPEN. CASPER uses iterative repair to support continuous modification and updating of a current working plan in light of changing operating context.

We, however, have not had an opportunity to exercise the CASPER features other than to execute the rover demos supplied with ASPEN which use CASPER to plan and re-plan rover missions.

The main obstacle to using the CASPER extension is its lack of documentation. In order to develop a model for CASPER, one would need to examine the rover models and adapt them for the specific need. CASPER is one of the many ASPEN features/extensions that we feel would prove invaluable provided sufficient documentation describing its usage was available.

For more information on CASPER, please refer to the CASPER Web page.

http://www-aig.jpl.nasa.gov/public/planning/casper/
Build Problems

ASPEN is delivered in a tape archive (tar) file containing the source code and binaries for Solaris. For our use though, the out of the box ASPEN was not sufficient. We needed to integrate ASPEN into SPLAT and thus needed the ability to build the ASPEN binaries locally. Relying on JPL to make source code modifications and waiting for a new delivery of ASPEN each time modifications were needed was deemed unacceptable.

ASPEN can be built with either the Solaris C++ or the GNU C++ compiler. We chose to build ASPEN with the GNU compiler because all of the tools required to build the distribution with the GNU C++ compiler were freeware. Had we opted to use the Solaris Compiler, a third party commercial Standard Template Library (STL) from ObjectSpace would have been required at an additional fee. Refer to the ObjectSpace web site for more information (http://www.objectspace.com/products/toolkits/).

Building ASPEN with the GNU C++ compiler yielded a wealth of Standard Template Library (STL) errors. The issue was a difference between JPL’s version of the GNU compiler and our version of the GNU compiler. JPL builds ASPEN with GNU C++ version 2.8.1.3. Our development system contains GNU C++ version 2.95.3. The template errors reported on our system were reported as warnings to JPL. These errors/warnings are related to how the ASPEN code was being “plugged” into the template library code. In short, the templates were expecting “char *” arguments but were being passed “const char*” arguments. Fixing this problem required modifications to many of the ASPEN source modules and several widely used header files.

It is important to note that we worked closely with JPL developers on this issue and the source code modifications necessary to fix the above errors/warnings have been integrated in the JPL ASPEN code base. What does this mean? Well it means that future users who wish to build a GNU compiled version of ASPEN in their local environment shouldn’t encounter the above mentioned template errors.

However it is important to note that our project was one of the few to build ASPEN outside of the JPL environment. Be aware that building ASPEN on another system or using a different version of the GNU compiler may raise other problems not found during our build.

Model Creation

Model creation for ASPEN is advertised as being simple, straightforward, and one of the advantages to using ASPEN. It is true that simple models, those that use only the basic features of ASPEN, are relatively easy to construct. We were able to develop a simple model for a single TERRA instrument (MODIS) and buffer within a relatively short period of time (1 week). However when we added the more complex features of our model, the basic features were no longer sufficient. We needed to use some of the more advanced features in ASPEN and the AML to develop our model and this proved difficult due to a lack of documentation and would not have been possible without the direct assistance of the JPL developers.

An example of the problems we encountered was adding support to our model for scheduling the start time of playbacks based on start times of the contact windows. The start of playback always occurs at some offset from the start of a k-band contact window. The exact offset is determined by the start times of the k-band contact and s-band contact. If the two contact start periods are the same, the start of the playback is offset 120 seconds from the start of the k-band contact. If the start times are different the start of the playback is offset 30 seconds from the start of the k-band contact window. In order to support this variable offset in our model, we had to use two ASPEN constructs that are not well documented. The first is external dependencies. This mechanism allows an activity to grab information from timelines or activities other than itself. In our playback activity, we needed to test the k-band and s-band activity timelines to determine the state of the contact (in or out). In order to grab the values from the external timelines we used another lightly documented feature of ASPEN parameter functions. The parameter function read the k and s band timelines and returned the state settings at a specified time. Developing the parameter function and understanding how external model dependencies worked would have proven difficult or impossible to implement without the assistance of the JPL developers.

JPL does provide a series of example models with the ASPEN distribution as examples. However, these models are lightly documented at best and we were unable to compile and test most of the models. The bottom line is that simple models such as the EO1 example provided with the ASPEN distribution are relatively easy to create. They have a few activities and don’t really exercise the more advanced and powerful features so they can be easily generated with only a limited knowledge of AML and the ASPEN system. However the more complex the model, the more the advanced features are needed, and the bigger the need for a working knowledge of the ASPEN system internal.

We believe that additional documentation describing the AML in greater detail including the features such as parameter functions, external dependencies, user defined timelines, etc. would go a long way to clearing up the problems we encountered during development of the Terra Model.

Resource Precision Issues

One of the biggest problems and most troubling issues encountered with ASPEN was the relatively limited range of values assignable to depletable resources. ASPEN limits integer resources to the following range: –230 to 230 – 1(-1073741824 to 1073741823). In order to properly model the SSR buffers, our model needed to support filling and depleting very large buffers down to the bit level. The four SSR buffers contained in our model have capacities ranging from 1.5 to 90 Gbits (Billion) and modeling them to the bit level exceeds the valid range of values for integer resources.

Resource Reservation Issues

The ASPEN method of handling resource reservations on timelines is brute force and was not acceptable for our model. ASPEN handles resource reservations by applying the full reservation value to the timeline at the beginning of an activity. This is fine for activities where the actual reservation is not based on activity duration and occurs at the beginning of the activity. However for activities such buffer filling and playback, the resource reservation doesn’t occur all at once rather the reservation increases or decreases linearly over time from the beginning to the end of the activity.

To solve this problem, activities in the TERRA SSR model that require linear modeling of resources have been decomposed into a series of shorter duration activities. Instead of having the reservation slammed at the beginning of a single long activity, many reservations are applied, one for each of the shorter duration activities, causing a stair step affect and giving the appearance of a somewhat linear application of reservations for buffer depletion and playback activities. While not perfect, this method provided a quick solution to the problem and works well enough for the TERRA SSR model.

It is important to note that should the stair step method not be acceptable, one would need to create a new timeline type that linearly applies the reservation over the activity duration.

Floating Point Resource Issues

In our search for a solution to the resource precision issue it was thought that we could model the buffers to the bit level by using floating-point numbers and maintaining a portion of the precision beyond the decimal point. However, we quickly found out that floating-point resources are not directly available in ASPEN. The default timeline implementations in ASPEN support only integer or state values (enumerated types), no floating-point values. In order to use floating-point values on a resource timeline, one must use the Generalized Time Line (GTL) mechanism in ASPEN. The GTL mechanism allows one to create a new type of timeline that can represent different types of data (i.e. floating point values).

Our attempts at using the GTL mechanism to create floating point timelines were not fruitful. We were able to use the GTL mechanism to create the floating-point resources easily enough (with the assistance of JPL). However tests of the model with the floating-point (GTL) timelines were extremely slow during dispatch and repair and were deemed unacceptable.

Note that according to the JPL folks, this is a known problem and is being addressed. However no timetable was given as to when this will be completed. We were also warned that the GTL mechanism is relatively new to ASPEN and has only been lightly tested.

Socket Interface Issues

Integrating ASPEN into the SPLAT Tool required the creation of a socket client within the SPLAT source code. Through this client socket connection, the SPLAT tool commands ASPEN server operation. During the development of this socket client interface, we encountered a series of problems with the ASPEN socket interface. The most glaring of which is the fragility of the socket interface. Passing incorrect arguments (either number or type) or not listening (reading) for return results can lead to disaster (server crashes and core dumps).

Another problem encountered during development of the SPLAT socket client for ASPEN was the shortage and quality of documentation describing the socket interface and the command set. The only documentation pertaining to the socket interface other than that available in the code is a text file (socketServerAPI.txt) provided with the ASPEN distribution. However we found this document to be misleading and incomplete. If you should need to command ASPEN through the socket interface use the socketServerAPI.txt descriptions as a reference only. Refer to the source code to determine the command numbers and arguments.

ASPEN Performance

The performance of the ASPEN system (CPU and memory use) is largely a function of the number of activities within a schedule and it depends on the detail of the plan and the time covered by the plan. What we have found is that for the SPLAT Tool, loading and dispatching the schedule onto the timelines takes ~30 seconds while individual schedule repair iterations range from 20 – 40 seconds in length. The SSR Model used for the SPLAT Tool typically has 900 – 1000 activities when scheduled and covers an entire days operation for the spacecraft. One should expect the time needed to schedule and dispatch to increase with the number of activities and the length of the schedule. However one can always improve response time by looking at a more abstract plan (limit the detailing of activities), or at a smaller window of time.

According to JPL, the current bottleneck in ASPEN is memory. They noticed that page swapping significantly increased scheduling time. For one of their implementations, schedules with up to 9000 activities were not uncommon. They noticed that the ASPEN process began swapping for schedules larger than 6000 activities. Timing tests of the larger schedules indicated that the 6000 activity plan took about 12 minutes to schedule and the 9000 activity plan about 40 minutes. So beware very large schedules may cause ASPEN to swap leading to degraded performance.

Note: SPLAT timing tests were generated with an ASPEN server executing on a Sun Ultra10 Workstation (440 MHz UltraSPARC-II Processor) with 256 MegaBytes (MB) of Random Access Memory (RAM) and running the Solaris 8 OS. JPL timing numbers are for an ASPEN server running on a Sun Ultra 60 (450 MHz UltraSPARC-II Processor) with 1 GigaByte (GB) of RAM.

Software Maturity Issues

Another disturbing feature of the ASPEN system is the lack of software maturity. During testing and development, we experienced a large number of core dumps and our fair share of ungraceful server exits.

These crashes appear random in nature and often times are not reproducible. Some of these crashes could be due to the fact that our model is exercising little used and new functionality in ASPEN. However one would expect that a mature software product would be completely tested and debugged prior to release.

Our assessment of the ASPEN system is that it is a mature prototype.

Final Thoughts

The ASPEN system appears to be a very powerful and highly flexible system. However we feel that this system lacks maturity and robustness. The maturity issue continually raised its head during integration and testing of the SPLAT Tool. We were constantly encountering random system crashes and glitches that caused the scheduling engine to crash and exit ungracefully.

It is important to note the use of ASPEN for SPLAT has only scratched the surface with respect to what can be accomplished with ASPEN. ASPEN allows the flexibility of user defined scheduling functions, user defined (custom) timelines, schedule scoring, custom parameter functions, custom heuristic functions, etc. However, utilizing the advanced features in ASPEN requires an intimate knowledge of the software structure and a clear understanding of the advanced features. Unfortunately documentation both in-line and hardcopy for ASPEN is sparse at best. The Users Guide lacks descriptions of how to use the advanced features and is sometimes misleading or incorrect. No programmer documentation exists for the system and the source level code is terrible.

In order for ASPEN to be a more widely used and accepted system, User level documentation must be completely revamped with descriptions of all system features. Additionally, the source code documentation must be beefed up, and a Programmers Guide describing how to implement custom versions of the advanced features within ASPEN must be developed.

