
Developing WWW
Applications Using Cold
Fusion™

By: Rachel Campbell and Linda Cingel

February 12, 1998

What is a WWW Application?

■ It is a tool for performing a task, used
through a World Wide Web browser

■ It should be distinguished from:
– Static informational web pages

– Desktop applications, which must be installed

■ Example: Acronym Application

Why WWW Applications-- and When?

■ Eliminates the need for installation support

■ Easily provides access to a distributed user
base

■ Cross-platform delivery with fewer cross-
platform programming problems

■ Works well with small applications that
require little client-side processing.

Why Use Cold Fusion?

■ Easy to learn--even for “non-programmers”

■ Supports quick, easy “rapid application
development” of WWW applications

BUT...

■ You should Know When to Say NO!
– Large applications become unmanageable,

sometimes unusable, and difficult to maintain.

– Many applications should still be desktop
applications!

Goals For This Presentation:

■ Provide general understanding of Cold
Fusion’s architecture, development process
and capabilities

■ Provide a specific tutorial for developing a
basic Cold Fusion application

■ Provide additional resources and direction
for moving on into more complex
development

Agenda

■ Cold Fusion Application Architecture

■ What You Need to Get Started

■ Getting Started With Cold Fusion

■ Getting Down To Basics

■ Tips and Techniques

■ Advanced Features

■ Additional Resources

Cold Fusion Application
Architecture

Cold Fusion Application Components

■ Server Applications:
– HTTP Server

– Cold Fusion Server Application

■ Your Code:
– .cfm Application Pages (Example 1)

■ Data:
– ODBC Data Source(s) and Database(s)

– (Optional) Other sources of data (File System, SMTP
Server, COM objects, etc.)

How they Work Together

HTTP
Request

Web
Server

Cold Fusion
Server

Application

File
System

SMTP
Server

Other
Applications
and System

Services

Internet or
Intranet

Web page

1

2

3

4

5 Server

Web
Browser

.cfm page
DataBase

Server

.html page

What You Need to Get Started

Client SoftwareDeveloper Software

Server
Software

Server Software:

■ Microsoft NT Server/Solaris

■ Cold Fusion Application

■ HTTP Server (e.g., MS
Information Server)

■ RDBMS (e.g., MS SQL Server)

Developer Software:

■ Cold Fusion Studio, or other
HTML editor

■ Database Client software
(e.g., SQL Enterprise
Manager, or at least MS
Query)

■ Note: Some Developer software
is included w/server software.

Client Software:

■ WWW Browser (e.g.,
Netscape Navigator, MS
Internet Explorer)

■ Recommend Testing on all
Supported Browsers

■ Note: Cold Fusion works with
any browser… it simply delivers
standard HTML.

Getting Started With Cold Fusion

Step 1: Design

Step 2:
Build Application Pages

Step 3: Debug

Step 1: Design

■ Employ a Rapid Application Development
mindset:

■ Plan the Information Design As Well As
you can…
– Task Analysis (Example 2)

– Naming Conventions (Example 3)

■ Then Quickly Move On, Relying on an
Iterative Process

Step 2: Build Application Pages

■ Elements of a Cold Fusion Application Page
– HTML, Cold Fusion, JavaScript, and more…

(Example 4)

– Remember, Cold Fusion can be used with most
other WWW technologies

■ Design the Interface
– Use CF Studio, or a WISIWYG Editor

■ Make it Live
– Add Cold Fusion to the Page

Step 3: Debug

■ Database: Is Your Query Correct?

■ CF Syntax/Logic: Is Your Cold Fusion
Syntax Correct?

■ Other Technologies: What About
JavaScript?

Getting Down to Basics:

■ Selecting/Displaying Information

■ Updating Information

■ Creating Dynamic Pages

■ Using CF Functions and Expressions

■ Creating Reports

Selecting/Displaying Information

■ Assume infrastructure is complete (i.e.,
software, database, ODBC data source,
permissions all in place and correct)

■ Create a basic Cold Fusion template page:
– Define a Query

– Define Results Display

Define a Query

■ Using a <CFQUERY> tag
Basic Syntax:

<CFQUERY NAME="query_name" DATASOURCE="ds_name”
USERNAME="username” PASSWORD="password">

 SQL statements

</CFQUERY>

■ Using stored procedures
Basic Syntax:

<CFQUERY NAME="query_name” DATASOURCE="ds_name”>

 { call procedure-
name[([parameter][,parameter]]...)] }

</CFQUERY>

Define how the Query’s results will be
displayed:

■ <CFOUTPUT> tag provides the most flexible way to
display query results

■ Basic Syntax:
<CFOUTPUT QUERY="queryname" MAXROWS=n >

 Literal text, HTML tags, and

 dynamic field references (e.g.
#FieldName#)

</CFOUTPUT>

■ (Demo 1)

■ (FYI) Other CF display features include CFTABLE,
CFCONTENT, and CFFORM (See Documentation)

Updating Information

■ Inserts, Updates, and Deletes require two
.cfm template pages:

■ A <FORM> page accepts user input as to
the changes required

■ An Action page performs the requested
action.

Create a <FORM> to accept user input

■ Use basic HTML or a dynamic <FORM> for users to
provide information for the action

■ Basic Syntax:
<FORM ACTION=”ActionPage.cfm" METHOD="post">

 Data Entry: <INPUT TYPE="text" NAME=”DataEntry">

 <INPUT TYPE="Submit" VALUE="Enter Information">

 </FORM>

■ (Demo 2, 3)

The <FORM> Action calls the Action page

■ An Action Page is a .cfm template containing a QUERY to
handle the user input.

■ Cold Fusion provides two ways to handle database updates:
– Simplified queries using <CFINSERT> and <CFUPDATE>

– User-defined queries using <CFQUERY>

Updating Using <CFINSERT> and <
CFUPDATE>

■ These Tags allow for simple queries, without qualifier
statements

■ <CFINSERT> allows for simple insert statements
Basic Syntax:
<CFINSERT DATASOURCE="ds_name"

 TABLENAME="tbl_name” TABLEOWNER="owner"

 FORMFIELDS="form_field1, formfield2, ...">

■ <CFUPDATE> allows for simple update statements
Basic Syntax:
<CFUPDATE DATASOURCE="ds_name"

 TABLENAME="tbl_name” TABLEOWNER="owner"

 FORMFIELDS="form_field1, formfield2, ...">

■ (Demo 4)

Updating using <CFQUERY>

■ <CFQUERY> allows you to create more complex queries
(e.g., updating several tables, etc.)

■ Basic Syntax:
<CFQUERY NAME="query_name" DATASOURCE="ds_name”
USERNAME="username” PASSWORD="password">

 SQL statements

</CFQUERY>

■ (Demo 5)

Creating Dynamic Pages

■ Cold Fusion provides several tags to control page
flow

■ These options allow you to provide the user with
different pages based on user selection or the
processing of query results.

■ Use these options to make the web site more
intelligent and “application-like”.

Redirecting Application Page Requests
(CFLOCATION)

■ You can redirect a page request to another page or to
another URL using the CFLOCATION tag.

■ Use to define an application page that performs one or
more CFQUERYs and then moves on to another page.

■ Also useful if you want the URL to which the user is
directed to depend upon a dynamic parameter.

■ Basic Syntax:
<CFLOCATION URL="filename.cfm">

■ (Demo 6)

Including Application Page Files
(CFINCLUDE)

■ You can include one or more template files in a given .cfm
template.

■ Use for creating reusable code, to be included in a variety
of pages.

■ Basic Syntax:
<CFINCLUDE TEMPLATE="TemplateFileName">

■ (Demo 7)

Conditional Processing (CFIF, CFELSEIF,
and CFELSE)

■ Use simple conditional statements to customize the
behavior of your application.

■ You can also create complex conditional statements,
combining multiple conditional statements with boolean
operators.

■ Basic Syntax:
 <CFIF value operator value>

 HTML and CFML tags

 <CFELSE>

 HTML and CFML tags

 </CFIF>

■ (Demo 8)

Looping (CFLOOP)

■ Looping lets you repeatedly display a set of instructions or
some output depending on a particular set of conditions.

■ <CFLOOP> allows for four different types of loops:
– Index loops (also called FOR loops)
– Conditional loops (also called WHILE loops)
– Looping over a query
– Looping over a list

■ Basic Syntax:
 <CFLOOP INDEX="LoopCount" FROM="1" TO="100">

 The value is <CFOUTPUT>#LoopCount#</CFOUTPUT>.

 <CFIF LoopCount IS 7> <CFBREAK> </CFIF>

 </CFLOOP>

■ It is especially useful for looping outside of CFOUTPUT.

Using CF Functions

■ Cold Fusion provides a wide range of functions
similar to those you would expect in a
programming language.

■ Functions can be used to process user input before
updating the database, or to manage the display of
data.

■ Refer to the Cold Fusion documentation for a
complete description.

■ (Example 5)

Creating Reports

■ Cold Fusion provides support for Crystal Reports:
– Crystal Reports comes bundled with Cold Fusion v.3.

– The Cold Fusion <CFREPORT> tag allows you to
specify a CR definition. The report is then generated to
HTML and displayed in the browser.

– Alternatively, you can simply define the query and
output for display only using Cold Fusion.

■ Example 6

Tips and Techniques

■ Using <CFTRANSACTION> and Stored
Procedures

■ Unit Testing

■ Using Variables

■ When to Use JavaScript?

Using <CFTRANSACTION> and
Stored Procedures

■ Problem: What if a problem happens during a
database save?

■ Solution: Use Stored Procedures or a <
CFTRANSACTION> tag.
– Keep your common database queries in stored

procedures. The application in general will be easier to
maintain, and you can “back out” if the procedure fails.

– Alternatively, whenever you need to perform more than
one action, put them within a <CFTRANSACTION> tag.

Unit Testing

■ Problem: In debugging, it is sometimes difficult
to tell if the problem lies in your SQL or your
Cold Fusion logic.

■ Solution: Unit Test using RDBMS software.
– Make sure that all your SQL is kept in stored

procedures.

– Test each stored procedure using database management
software before testing it within Cold Fusion.

– Note: This approach allows for various types of people
to work on a single application (e.g., an interface
designer and a programmer/database expert).

Using Variables

There are five types of variables:
• Form Elements Accessible from the <FORM>’s Action page

only (the page after the page in which the
form element is defined).

• Global Variables
<CFCOOKIE>

Accessible “application-wide”, for a user-
defined period of time

• Local Variables
<CFSET>

Accessible only during the lifetime of the
page in which the variable is defined

• URL Variables Passed through the URL, and accessible
during the lifetime of the page which is called

• Query columns Accessible only during the lifetime of the
page from which the query is executed

When do you use each kind of variable?

■ Form Elements:
– Use input fields for user input

– Hidden fields are useful for storing primary key information

■ Global Variables (<CFCOOKIE>):
– Use for “App-wide” information that won’t change (e.g., user id)

– Be aware of limitations on Cookies and conflicts with other apps

■ Local Variables (<CFSET>):
– Use to process information in a given page

■ URL Parameters
– Use to pass local variables to be used in the next page

– Pass information “back” to an earlier form (e.g., an edit page
expecting a primary key id).

When To Use JavaScript ?

■ Problem: JavaScript and Cold Fusion both provide
capabilities for field validation and dynamic
HTML. When should you use which?

■ Solution: Try to perform “client-oriented”
activities on the client (JavaScript) and data- or
“server-oriented” activities on the server (Cold
Fusion).

■ JavaScript is especially suited for maintaining
Frames and interface elements (e.g., buttons, etc.)
– Perform most field validation using Cold Fusion.

Advanced Features

■ Java

■ Email Support

■ File Access

■ Custom Tags

■ Support for Standards (COM, LDAP)

Additional Resources

■ Cold Fusion Web Site:
– http://www.allaire.com

■ Developers Forum (from CF Web Site)

■ Cold Fusion Users Guide
– http://aaadev.gsfc.nasa.gov/cfdocs/user/index.htm

■ Good Books
– The Cold Fusion Web Database Construction Kit; Ben

Forta (Editor), et al

– Cold Fusion 3.0 : Application Development Toolkit
(Internet Professional Series); John Desborough

