[image: image1.wmf]ComPASS Plan Language

[image: image20.wmf]
[image: image13.wmf]- Status at stack

level n

- StatusList

from stack level

n+1

- Status 1 at stack

level n+1

- StatusList from

stack level n+2

Status 2 at stack

level n+1

StatusList from

stack level n+2

-

Status Code

-

Associated Message

Century Computing Division

8101 Sandy Spring Road

Laurel, MD 20707

Phone: (301) 953-3330

Fax: (301) 953-2368

www.cen.com
ComPASS Plan Language

Requirements, Design, and

High Level Implementation

Version 0.1 Draft

Prepared for:

Barbie Brown

NASA/Goddard Space Flight Center

AETD Information Systems Center

Advanced Architectures and Automation Branch, Code 588

Table of Contents

11.0 Introduction

2.0 Background
2
2.1 ComPASS System Overview
2
2.2 ComPASS System Components
3
2.3 Need for a ComPASS Plan Language
4
2.4 Highlights of the ComPASS Plan Language
4
2.5 Multi-Level Planning and Scheduling
5
2.6 Adaptability of the Plan Language to Different Missions
7
2.7 Influential Planning/Scheduling Systems
8
3.0 Plan Language Design Description
9
3.1 Requirements
9
3.2 Design Philosophy
10
3.3 Components of the Plan Language
11
3.3.1 Activity
13
3.3.2 ResourceRequest
17
3.3.3 Constraint
18
3.3.4 Plan
22
3.3.5 Schedule
25
3.3.6 Conflicts
28
3.4 Interface with a Planner/Scheduler
29
3.4.1 Role of the Plan Mediator
29
3.5 Interface with the Mission Model
31
3.5.1 Model Mediator
31
3.5.2 Resource Timeline Builder
32
3.5.3 Invocation of the Model Mediator
32
3.6 Underlying Concepts
34
3.6.1 Use of Spacecraft as a Global Resource
34
3.6.2 Maintenance of the ResourceContext
34
3.6.3 Failure Message Capture and Propagation
35
4.0 Java Implementation of the Plan Language
37
4.1 Specification of Plan Language Classes
37
4.1.1 Utility classes
38
4.1.2 PSPlan
39
4.1.3 PSConstraint
46
4.1.4 PSRelationship
47
4.1.5 PSConflict
49
4.1.6 CpsUser
49
4.2 Textual Representation of Plan Language Objects
50
Table of Contents, continued
Appendix A: Plan Language in Planning Scenarios
52
A. Basic sequence
52
B. Repeated sequence
53
C. Two observations with re-aiming
54
D. Observation based on ephemeris and spacecraft position
55
E. Earth observations
55
F. Best use of guaranteed time block
56
G. Science operations around critical maneuvering
57
H. Simultaneous observations
59
Appendix B: Design Choices
61
Appendix C: Future Enhancements to the Plan Language_____________________ 63

1.0 Introduction

This document provides a high-level description of the Plan Language developed for the Common Planning And Scheduling System (ComPASS) framework. Section 2 gives an overview of the ComPASS system aimed at helping the reader understand the need for a ComPASS-specific Plan Language. It also gives the background for determining the functional capability and design structure of the Plan Language, including references to the Planning and Scheduling (P/S) systems that have influenced its design.

Section 3 presents the requirements and high level design of the ComPASS Plan Language. It describes the components of the Plan Language, the inter-relationship among these components, and their interfaces with other components of ComPASS. It also provides a preliminary, textual representation of a ComPASS plan suitable for human interpretation.

Section 4 provides a brief discussion on the current Plan Language implementation using the Object-Oriented methodology and the Java language. The attributes and main methods of the individual objects comprising the major components of the Plan Language are presented.

Appendix A presents a few planning/scheduling scenarios for astronomical missions and how the plans can be represented using the ComPASS Plan Language.

Appendix B narrates the important design choices that are made in developing the Plan Language, and the reason behind these choices.

Appendix C lists some suggestions for further development of the Plan Language.

2.0 Background

This section provides the context for the design of the ComPASS plan language.

2.1 ComPASS System Overview

The primary goal of the ComPASS project is to identify, develop, and infuse technology to create a collaborative framework for end-to-end planning and scheduling within many mission architectures.

ComPASS builds upon concepts from two previous GSFC-funded projects: the Collaborative Advanced Planning Environment (CAPE) and the Cooperative Autonomy Laboratory (CAL). CAPE proposes a generic framework upon which an end-to-end planning system can be constructed. It brings the ideas of sharing the plan and the system models so that all planners, from the science planner to an on-board autonomous planner, are working from a consistent view of the domain. CAL presents a model of mission autonomy, both human and machine, and explores the need for mediated collaboration among the components of an autonomous system.

The major objectives of ComPASS, therefore, are encapsulated as:

1) Provide an easy-to-use collaborative environment that enables all users to share information and work towards a common goal.

2) Provide a robust framework to aid in the execution of the mission objectives - starting from the Science Plan and resulting in on-board command execution, and would provide early feedback to the scientists so as to help in iterative modifications to their plan.

To promote user collaboration in a safe and flexible manner, ComPASS provides a number of important services through a weakly coupled, distributed environment called the Collaborative Object-oriented Virtual Environment (COVE). The highlights and descriptions of COVE are presented in a separate document, named the COVE Design Document.

The second objective is accomplished in ComPASS by adopting a multi-level planning approach. This requires the decomposition of higher level, low-fidelity science plans into a set of progressively lower level, higher fidelity mission-related plans. Each of these plans may be input to an appropriate scheduler to generate an optimized schedule at that level. This approach will help in the detection of scheduling conflicts at an early phase in the planning/scheduling cycle, and allow users to make modifications to their plans and resubmit them on a timely basis. This multi-level planning/scheduling capability constitutes the heart of the ComPASS Planning and Scheduling framework.

2.2 ComPASS System Components

The ComPASS system will be implemented in a distributed architecture with the following components: (Reference the COVE Design Document for details.)

(a) A set of Client applications, with graphical user interfaces, that can run at the users’ home nodes. The Client application helps the users translate their science and engineering objectives to high level, ComPASS-specific activity plans.

(b) One or more Model Servers, which run at designated sites and provide information such as flight dynamics, instrument usage, and other mission-related data to any ComPASS module.

(c) One or more Planner/Scheduler modules, that execute on any host node, and convert an input plan to an optimized, output schedule, at a given planning level.

(d) A distributed, object-oriented database used as persistent storage for all planning and scheduling information.

ComPASS is designed for technology reuse, and intends to adapt existing planning/scheduling tools and models developed by NASA, other agencies, or commercial entities to operate within its framework. The adapters are in the form of intelligent interfaces called Mediators, which provide the ability for the external components to work in a consistent manner within ComPASS.

[image: image14.wmf]Client

Interface

Spacecraft

Models

Plan

Database

Science

Planner

Mission

Planner

Client

Interface

Client

Interface

Client

Interface

Client

Interface

Client

Interface

Orbital

Models

Figure 2.2-1 Top-level Architectural View of ComPASS
2.3 Need for a ComPASS Plan Language

For collaboration between the ComPASS components, mentioned in Section 2.2 above, the need for a common representation of the planning/scheduling data in the persistent database is obvious. This common representation is embodied in the form of a Plan Language. To satisfy ComPASS goals, this language must be:

· Rich enough to represent the scientists' high level science goals

· Generic enough to accommodate various types of NASA missions

· Broad enough to be used at different planning levels

· Flexible enough to accommodate future requirements

· Compact enough to conserve database space, and minimize the amount of data transferred between distributed applications.

Currently, no plan language developed commercially or by any other government agency, is known to exist that meets all these goals. We have not discovered a plan language that handles fidelity levels. The ComPASS Plan Language, therefore, is being designed and developed to meet these needs. We do not intend to design a plan language from scratch. We have based the ComPASS plan language on existing work in the field that meets most of the goals.

The structure and content of the Plan Language presented in Sections 3 and 4 of this document is our initial attempt to design this complex entity. It is expected that the language will undergo a number of refinements and future enhancements during the development life cycle of the ComPASS system. Some of the anticipated enhancements are suggested in Appendix C.

2.4 Highlights of the ComPASS Plan Language

This section summarizes the strengths of the ComPASS Plan Language in various areas related to planning and scheduling operations for a spacecraft mission. Each of these topics is covered in detail in the following sections of this document.

· Planning

· Multi-level planning with increasing levels of fidelity

· Same language used at each planning level

· Long, short, and intermediate range planning capability

· Master plan, and mini-plans for testing

· Editing, and merging of plans at each level

· Activity Request

· Expression of science goals as Activities

· Composite Activities, incorporating lower level ones

· Recurring or periodic Activities

· Alternate decomposition of Activities

· Use of pre-defined, or canned, Activities with user-supplied parameter values

· Same framework to handle Engineering Activities

· Incorporation of "user information" into Activities

· Mission-independent, generic format for all components

· Scheduling

· Multiple-level scheduling, in parallel with planning

· Multiple schedules derivable from same plan

· Direct mapping capability from lowest to highest level Activities

· Mission Model

· Incorporation of Mission model into the Plan through resource requests

· Interaction with the model for resource consumption data

· Different resource consumption models for different fidelity levels

· Independence of Plan Language from type of Mission Model used

· General Features

· Designed to be used with more than one Planner/Scheduler (with appropriate interface layer)

· In-depth, context-sensitive error capturing and reporting capability

· An activity at any level can be traced to it originator

· Textual representation of a Plan and lower level component

· Java language implementation

2.5 Multi-Level Planning and Scheduling

The ComPASS framework supports a multi-level planning and scheduling architecture, where an increasingly higher degree of fidelity is incorporated into deeper levels. This implies that a plan, at a certain level and fidelity, can be converted to a lower level plan of higher fidelity through the decomposition of the enclosed activities.

The planning levels in a ComPASS Application system are mission-specific; typically a spacecraft mission has three levels of fidelity – Science, Mission, and (Command) Sequence. The planning levels are associated with a "degree of fidelity" and are assigned monotonically increasing level numbers. The relationship between level and fidelity is that:

· The level of a plan increases as its Level number decreases.
Thus, for a three-level system, Science Plan (Level 0) is of the highest level and Sequence Plan (Level 2) is of the lowest level.

· The degree of fidelity of a plan increases with its level number.

The fidelity or level of detail in Level 2 (Sequence Plan) is higher than the fidelity at Level 0 (Science Plan).

Analogous to plans, there are schedules at each fidelity level. A schedule is generated from a plan at the same level. Multiple schedules may be generated for the same plan, by choosing different initial conditions or scheduling algorithms.

The key concepts to multi-level planning and scheduling are:

1. A plan at any level is a collection of activities at that level.

2. A plan at any level may contain conflicts. The corresponding schedules, at that level, may either remove the conflicts or at least identify the conflicts (so that they may be later removed) in the Plan.
3. A Schedule at Level n is used as the Plan at Level n+1. The promoted schedule might still have conflicts at Level n.
Most systems may use a schedule, that still has conflicts, as the plan for the next level (Example: Long term Science planning for big observatories) This will reduce the rejection of activities based upon premature or inaccurate model information, and will allow for better optimization at a lower level.

In ComPASS, the planner and the scheduler work in concert to decompose a plan and execute the plan. At higher level, plan execution may mean to detect the conflicts. At the lowest level, plan execution may mean sending spacecraft commands to the on-board processor. After a Level n plan is decomposed by the planner, the decomposed structure - which is referred to as the Problem at level n - is input to the scheduler for generating a schedule. A schedule at this level, which may be created in several iterations, is referred to as the Solution at level n. A scheduler, in generating the schedule at any level, may perform optimization at that level.

The following may be noted in relation to reaching a solution to a planning problem, although they are not multi-level planning issues:

· Not every initial problem, unmodified, would yield a satisfactory solution. (That is: the scheduler might not automatically resolve all detected conflicts.) User participation is necessary, through Iterative Scheduling, to improvise the problem so that it converges to a finite solution.

· More than one solution to the same problem is possible by choosing different initial conditions, different algorithms, and by removal of conflicts in different ways.

Figure 2.5-2 provides a schematic view of multi-level planning/scheduling in ComPASS.

[image: image2.wmf]Selected

Plan

Schedule

(

conflicts

)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(

no conflicts

)

Selected

Plan

Schedule

(

conflicts

)

Level n

Level

n+1

Schedule

(

conflicts

)

Schedule

(no conflicts

)

Level n+2

Problem

 at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

Planner

Scheduler

Figure 2.5-2 Relationship between Plans and Schedules at Different Levels

The mechanism to transform a plan as the solution (output) from level n to the problem (input) at level n+1 is mission-dependent. It depends upon how the decomposition of an activity is handled between planning levels. A ComPASS Application System needs to select an appropriate Planner component at each level. A simple Planner can expand each Level n activity to a fixed set of activities at the next level, using stored information. Other planners may choose from a set of fixed decomposition or choose a decomposition based on other, external factors. For systems that may use for pre-canned, fixed decompositions, the decomposition information can be saved along with the activities themselves, and is readily available to the planner at the next level.

2.6 Adaptability of the Plan Language to Different Missions

The ComPASS Plan Language is designed to provide a generic framework for multi-level planning and scheduling, with no explicit assumptions related to levels of planning, mission characteristics and user community. Specifics of a mission, including the environment, resources and resource usage profiles are incorporated through the Mission Models, independent of the Plan Language. Allowed operations, at each planning level, are defined and saved in the database as Activity templates, and accessed generically.

The above characteristics make the ComPASS Plan Language more readily adaptable to a new mission, and provide the core planning/scheduling capabilities for the mission. However, it is anticipated that they may not always meet the domain-specific needs of each mission. Those needs have to be evaluated and addressed on a per domain basis. They will be incorporated as extensions to the Plan Language in future.

2.7 Influential Planning/Scheduling Systems

The requirements and design of the ComPASS Plan Language are influenced by the results of the work by many researchers in the computer-assisted planning arena. This work is cited and summarized in the CAPE white paper. The major influences are:

1. I-N-OVA Model from O-Plan lead by Austin Tate and developed by the AIAI, University of Edinburgh

2. Core Plan Representation (CPR) funded by DARPA and influenced by O-Plan and KSRL.

3. ASPEN (JPL), HSTS (ARC), and MOPSS (GSFC) are operational systems that show what currently works and where improvements can be made.

The I-N-OVA Model supports constraint-based scheduling of activities. The schedulers that ComPASS will support most easily will be constraint-based schedulers.

3.0 Plan Language Design Description

The ComPASS Plan Language and its high level design are described in this section. First, the requirements related to the Plan Language are presented, followed by references to systems or prototypes that have influenced the language design, and finally the ComPASS Plan Language design. Since the Plan Language is developed using an object-oriented framework, its design is discussed in terms of the structure, attributes and properties of the component objects of this language.

3.1 Requirements

The main purpose of the ComPASS Plan Language is to provide a suitable medium through which different components of the ComPASS system may exchange planning and scheduling related data in a comprehensive fashion. This language supports the overall goals of ComPASS by possessing the following capabilities:

a) Provides a structure that allows scientists to express their science goals in an intuitive manner.
Because the ComPASS GUI clients solicits plan content from the user and translates the user requests into the ComPASS Plan Language, the users do not have to learn the Plan Language explicitly. However, the Plan Language must be able to store the user requests in the user's terms, such as a target name instead of coordinates, for use in feedback and re-planning.

b) Allow for multiple levels of planning.
As described in Section 2.5, planning starts at high level (lower fidelity) operations, which are refined at each stage into lower level (higher fidelity) operations of spacecraft components. The advantages of this multi-tier planning framework are discussed in the CAPE White Paper.

c) Work with suitable external scheduling engines.

These can be developed by other NASA agencies or provided by the mission, and integrated into the ComPASS framework to perform the actual planning/scheduling. This problem is not an easy one to solve, since each external Planner/Scheduler incorporates its own planning language and a translation from one representation to another is required. Therefore, the ComPASS Plan Language was designed after studying some of the Planner/Schedulers that are suitable for inclusion in ComPASS, so that this translation is achieved relatively easily, and without losing finer functional capabilities of the Planner/Scheduler.

d) Provide a generic, robust, and flexible tool that can be adapted to specific missions relatively easily.

This means the components of the language should not make any assumptions about any specific mission, but should provide ways to define the characteristics of the mission as system parameters and configuration data.

e) Provide easy error reporting and feedback mechanism to the users of the system.
This is a very important goal of the ComPASS system, since, without an efficient and detailed feedback mechanism, iterative scheduling is not very effective. By integrating this requirement to the Plan Language itself, the feedback received at different steps in the scheduling cycle is preserved with the planned actions and retrievable at any point. This capability is also very important for autonomous scheduling and plan repair.

3.2 Design Philosophy

The Plan Language is developed as an object-oriented framework. It defines a set of objects suitable for representing the conceptual objects of a planning/scheduling system, as well as the operations performed on these objects by the system. As the ComPASS users define their science/mission goals using this language, the underlying objects are created by the client program, and are written to the database for persistence, using the COVE architecture. As plans are formulated and schedules are generated, other objects, provided by the Plan Language are created and added to the database.

Figure 3.2-1 shows the relationship between the Plan Language, the Plan Mediator, the Model Mediator, and the Planner/Scheduler under the ComPASS/COVE architecture. The Plan Mediator is a mechanism by which the ComPASS Plan Language is translated to a chosen external Planner/Scheduler's native representation. The Model Mediator provides an interface to Mission Models for accurate predictions on resource consumption by planned activities at scheduling time. The mediators are described in Section 3.4 and Section 3.5

[image: image3.wmf]Planning

Database

ComPASS

client

Plan Mediator

Planner/

Scheduler

Model Mediator

Models

Legend:

ComPASS Plan Language Interface

Planner/Scheduler Native Interface

Model Native Interface

ComPASS Model

Language Interface

COVE

Figure 3.2-1 ComPASS Planning/Scheduling System Components and Interfaces

3.3 Components of the Plan Language

The ComPASS Plan Language is structured in an intuitive way such that the high level components of the language parallel the actual components of a planning/scheduling system. Its major components and their usage are shown below.

· Activity

Represents user's science or engineering goals or objectives at appropriate levels of abstraction.

· Resource Request
Specifies system resource needed to perform an Activity

· Constraint

Imposes rules under which an activity may or may not be scheduled

· Plan
Specifies a set of Activities to performed over a specific time period

· Conflict
Indicates a condition due to which an Activity could not be scheduled

· Schedule
Represents a sequencing of Activities within a Plan such that Conflicts are minimized.

The Plan Language component, and certain lower level objects are discussed at a high level in the sections below. Figure 3.3-1 illustrates the relationships among the components. The PlannedActivity object, ScheduledActivity object, and ActivityTemplate object are variations of Activity, and discussed in Section 3.3.1. ResourceContext is an object, discussed in Section 3.3.4, which indicates the state of various resources in the system as a function of time.

Notes:

· In the rest of this document discussion, words such as Activity refer to a Plan Language component. An equivalent lower case word (e.g. activity) is used for an equivalent, generic planning/scheduling entity.

· The usage of symbols in the diagrams is as follows:

[image: image4.wmf]B

A

 A is the super class of B

B

A

 A has a collection of B

B

A

 A contains (owns) B

B

A

 A contains a reference to B

B

A

 A is input to B

[image: image5.wmf]Legend:

Utility object

Plan

Planned

Activity

Activity

Template

Resource

Request

Constraint

Schedule

Resource

State

Vector

Scheduled

Activity

Conflict

Status

Reporter

Unscheduled

Activity

Figure 3.3-1 Components of the ComPASS Plan Language

3.3.1 Activity

Description

Activities constitute the most important component of the ComPASS Plan Language. An Activity describes an action or a system operation at a certain degree of fidelity. Science goals of a user, for example, are represented by top level Activities (of the highest abstraction or lowest fidelity) for a science mission.

Classification

Activities, at each planning level, are of two basic types: Atomic and Composite. Their difference is mainly in the manner in which they decompose to sub-Activities.

(a) AtomicActivity

An AtomicActivity specifies an individual action or basic goal of the system at a specific planning level or fidelity. A complete set of Atomic Activities must be defined at each planning level to cover all possible system operations at that level. An AtomicActivity at any planning level (except the highest one) is composed of a set of Activities at the next higher planning level.

An AtomicActivity must specify its own system resource usage and associated internal constraints (see sections 3.3.2 and 3.3.3)

(b) CompositeActivity

CompositeActivity, as the name indicates, is a macro activity that is composed of sub-activities - the sub-activities themselves being AtomicActivities or other CompositeActivities at the same fidelity level. They are primarily created to represent higher level science or operational goals, and/or for repetitive use.

CompositeActivities may be nested to any depth (called the nesting level). It is possible to define alternate decomposition paths for a CompositeActivity, since the primary goal of the Activity may be achieved in more than one ways. However, circular references among CompositeActivity objects are not permitted.

CompositeActivities are decomposed to the lowest nesting level (that is, to component AtomicActivities) in creating a schedule.

· PeriodicActivity

A PeriodicActivity is used to indicate recurring execution of a specified Activity over a time interval, either in a periodic manner or whenever certain conditions (with respect to resources or other system activities) are met. These types of Activities are frequently used to specify science goals and repetitive mission operation procedures. [Examples are: take an exposure of a specific target every three hours; shut down the specified on-board instruments when the spacecraft enters a shadow.]

A PeriodicActivity, in ComPASS, is treated as a special case of a Composite-Activity. Here the sub-activities of the Composite activity are all instances of the specified activity, spaced according to the associated periodicity rules. If the occurrences and other attributes of the sub-activities could be determined at the Composite's creation time, they are placed in the decomposition list. Otherwise, they are generated and inserted at a later time (by the Mediator or Planner/Scheduler) when all relevant information is available.

· Periodicity Indicator

A special Plan Language object named Periodicity indicates recurring nature of a Periodic Activity, and is used for the creation of the latter. There are four different types of periodicity considered for activities within a given time interval:

· Temporal periodicity - indicates the number of times the Activity is to be repeated

· Time periodicity - indicates the time interval at which the Activity is to be repeated

· Orbital periodicity - defines periodicity as a function of orbital period

· Constraint Satisfaction periodicity - indicates that the Activity is to be repeated whenever certain constraints are satisfied

The last type is most generic. However, it is most effectively processes during the scheduling phase, where as the others may be processed in the planning phase.

Class Hierarchy
Figure 3.3-2 shows the class hierarchy of Activity objects in ComPASS. The Planned Activity class, as the name indicates, represents an Activity in a ComPASS Plan, where as a Scheduled Activity represents an Activity in a Schedule. The differences between these two types are discussed under Schedules (Section 3.3.5). A Scheduled Activity is derived from an Atomic Activity since all Composite Activities are expanded to their Atomic components before scheduling is performed.

[image: image6.wmf]Activity

Activity

Template

Planned

Activity

Atomic

Activity

Composite

Activity

Periodic

Activity

Scheduled

Activity

Figure 3.3-2 Activity Class Hierarchy

Attributes
· Utilization of system resources by an Activity is indicated through a set of resource request objects. Usage of certain resources may be predicted through the mission's Resource Models.

· An Activity may be related to (constrained by) other Activities in the same plan, or to scheduled Activities in a globally known plan (called the MasterPlan. The referred Activity may be a specific instance Activity instance, or any/all instances of a given type.

· Relationship of an Activity with other Activities at that level are specified through a set of associated internal constraints. These constraints usually relate to the health and safety of the spacecraft or to the resource usage. Internal constraints should be modified only by authorized personnel.

· Further restrictions on an Activity are specified through external (imposed) constraints, defined or modified by the Activity user.

· An Activity has a set of permission attributes indicating whether it could be inserted, deleted, or updated automatically by a Planner/Scheduler, with/without user’s approval.

· An Activity and its properties can be defined once and saved in the ComPASS database, as Template Activities, for repetitive use. Many attributes of such an Activity can be parameterized so that their actual values can be specified by either by the user or the scheduler for each individual instance. Some parameters may be optional, having default values assigned to them. Other parameters, with no defaults, are regarded as mandatory parameters whose values must be supplied when the Activity is submitted for execution.

· An Activity is assigned textual fields such as "description", and "usage". This is useful for user queries and operations, but not used by the P/S system.

Figure 3.3-3 shows the structure of a PlannedActivity object that represents both Atomic and Composite Activities. Note that the Sub-activities list, in an AtomicActivity, could be null, if no higher fidelity decomposition information is stored there. (This is explained in Appendix B, Design Choices.)

[image: image7.wmf]Planned

Activity

Parameters

Internal

Constraints

External

Constraints

Resource

Requests

Sub-activities

Parent Activity

Activity

Template

Parent Plan

User

Information

Figure 3.3-3 Structure of a Planned Activity Object
3.3.1.1 ActivityTemplate

An ActivityTemplate represents an activity known to the system, and should be used as a prototype to create Activities of similar type to be included in the Plan. An Activity Template contains the following information

:

· List of resources required for the Activity, and their utilization information

· List of internal constraints associated with the Activity

· A default duration for the Activity

· The list of Parameters (and their valid values/ranges, and default settings) needed to create the Activity

· List of sub-activities the Activity decomposes to

A complete set of Activity Templates must be defined for the Atomic Activities at each fidelity level known to the system. They should also be generated and referenced for frequently used Composite Activities.

A PlannedActivity is a dynamic instance of an Activity included in a Plan. It is created by cloning selected portions of an ActivityTemplate and supplying or modifying information needed for that instance of the PlannedActivity. Composite Activities may also be created dynamically from lower level component Activities and then added to a Plan.

3.3.2 ResourceRequest

Description

A ResourceRequest object, in ComPASS, is used to request for a specific resource that is to be made available for an Activity's usage/consumption over a given time interval. The amount of resource required by the Activity should be specified in certain cases.

To explain the structure and use of a ResourceRequest object, the concepts of Resource and ResourceModel, from ComPASS perspective, are described below:

A Resource represents a physical resource used by the system. It encompasses varying types of entities such as instruments, power system components, attitude control system components, and communication links. Resources are categorized according to their utilization, sharing, and other properties. Identification and categorization of Resources is mission-specific.

Similar to Activities, higher level Resources decompose to lower level Resources, but Resource decomposition is not parallel to Activity decomposition, and does not follow a fixed hierarchy; although, in general, higher level activities refer to higher level Resources. The state of a higher level Resource is determined from the combined state of its lower level components. (Reference: FiniteStateModel by Altair). However, the decomposition information for a resource is not directly used by the P/S modules.

For planning, a Resource is classified on the basis of the following properties:

· Available/Sharable/Non-sharable

· Depletable/Non-Depletable/Renewable

· Discrete/Continuous

A Resource state may be a numeric quantity such as the amount or the capacity, or an enumerated value, such as High/Medium/Low. The final state of the resource depends upon its initial state, the action to be performed, and the current state of other components of the system (since utilization of one resource may depend upon the state or value of another resource in the system).

Resources are also associated with constraints. A constraint for a resource specifies what types of state transitions are permitted for that resource. It may also refer to the Activity, if any, that is required to perform the state transition. Note that Circular relationship between Resources and Activities are not permitted.

A ResourceModel captures the attributes, behavior and usage prediction of a Resource. A collection of predefined ResourceModels in ComPASS provides the handle to each specific resource known to the system for the purpose of Planning and Scheduling

Specification of Resources for an Activity

When an Activity is generated, the set of resources used by it is automatically determined from the set of pre-defined Atomic Activities (that is, Activity templates) in its decomposition hierarchy. Each AtomicActivity template contains a collection of ResourceRequest objects, one per required resource, with the following main attributes:

· Initial/final state of the resource

· Amount requested

· Duration of usage.

Default values, compatible with the resource's model, are specified for these attributes in the Activity template. They may be parameterized and overridden, if permissible, for individual instantiations of the Activity. Thus, each instance of the AtomicActivity in a plan has its own complete collection of ResourceRequest objects for use by the Planner/Scheduler.

Note that resource requests can meaningfully be defined only at the Atomic Activity levels. The resource request of a top-level composite activity is derived as the aggregation of the resources used by the components at its lowest nesting level.

3.3.3 Constraint

Description

Scheduling constraints are one way of defining when an activity may or may not be scheduled. Although an activity cannot be scheduled when a resource is not available for its usage, that is not a restriction intentionally imposed by the user, and is referred to as a "resource conflict", rather than an activity constraint. ("Conflicts" are discussed in Section 3.3.6 of this document.) In ComPASS, constraints associated with an Activity indicate, to the planning/scheduling system, the conditions under which it should attempt to schedule an Activity. They are represented by Constraint class objects and are attached to individual Activities.

3.3.3.1 Internal vs. External Constraints

For operational purpose, Constrains may be categorized into two different types, Internal and external - as discussed below.

· Internal Constraints

Internal constraints for an Activity denote constraints that are applied against all Activities of that type. In other words, they are global in nature. They are defined for the following reasons:

· Health and safety:

Some mission-imposed constraints are needed to enforce spacecraft health and safety or efficient operational procedures. These constraints are typically defined by the spacecraft engineers. (E.g. Do not turn on this instrument unless the temperature is between 40 and 50 degrees.)

· Policy Matters:

These constraints address policy issues for a mission. (E.g., don't image the earth over China.).

· Convenience:

If a user always wants to connect one activity to another activity or a resource in a certain way an internal constraint may be specified for it. These are especially useful for sub-activities in a Composite Activity.

Since internal constraints are applicable to all instances of a specific Activity, they are specified at the Activity template level.

· External Constraints

These are, in general, user-imposed constraints - specified by the scientist for an activity in order to get the maximum desired science value. Also, an engineer may impose constraint upon an activity to ensure that the activity has the desired effect (E.g., Spin rate must be less than 5 rpm). These constraints are specified only for specific instances of an Activity.

There is no difference between handling of external and internal constraints during planning/scheduling phase. However, operationally, internal constraint such as health and safety or policy related ones might be treated as hard constraints that should not be violated.

Classification
Constraint objects are sub-classed into three types, based upon their relationship to other objects in the system. These sub-classes are:

· ActivityConstraint
Denote the conditional relationship of the specific (constrained) Activity on another (reference) Activity for its scheduling.

· ResourceConstraint

Denote the condition that must be satisfied with respect to a particular system resource for the Activity to be schedulable.

· EnvironmentalConstraint
These are constraints that are related to the environment under which the Activity would take place. (For example: Don't take this exposure if the sun angle is less than 5 degrees; or if the cloud cover is more than 20 percent.)

Note that both Internal and the External constraints may be mapped into any one of the above three sub-classes of Constraint.

Attributes:

· Each Constraint object must evaluate to a True or False value.

· Constraints can be nested. This is needed to indicate grouping of lower level constraints into a higher level one, which may then be linked to another constraint at the same level. It is also used to remove ambiguity in evaluation of logical relations.

· A collection of Constraints on any object may be represented as a binary tree of any depth, with only two nodes at each level that are connected by a Logical AND/OR relationship.

Note that an Activity is scheduled only if all of its constraints are satisfied, that is, if the Constraint list evaluates to "True". The time to detect a "False" condition and hence reject the Activity depends upon the evaluation path chosen by the scheduler for the binary tree.

3.3.3.2 Evaluation of EnvironmentalConstraint objects

An ActivityConstraint or a ResourceConstraint is evaluated by querying the status, attribute or value of the referenced Activity or the Resource object. To maintain a parallel for EnvironmentalConstraints, a special class, named the EnvironmentObject is used. It handles the queries related to the environment in which an Activity is to be performed. Therefore, the characteristics of this class are system dependent and customizable for each mission.

For a spacecraft mission, an Activity's environmental constraints are related to:

· Spacecraft position, velocity, attitude

· Orbital parameters

· Field of view, ground location

· Sun angle

· Cloud cover

EnvironmentObject contains reference to other global objects specific to the system, and, in turn, queries these objects to retrieve information needed for evaluating the environmental constraints. For example, for a spacecraft related mission, spacecraft's position, orbital parameters etc. are obtained from the SpacecraftModel object, which encapsulated the spacecraft itself as the highest level system resource. (See Section 3.6 for Resource Model discussions.)

3.3.3.3 Relationships

In the ComPASS Plan Language, a constraint on an Activity is specified in terms of Relationship objects, which represent the way the Activity is related to some other entity.

Relationships are classified into three major sub-types:

· Temporal Relationship: shows how two objects connected in time

· Spatial Relationship: shows the connection with respect to position or location

· Parametric Relationship: shows the connection through the value of a parameter

Note that Temporal and Spatial relationships are special cases of Parameter relationship, but are treated at the same level as the later due to their importance and high visibility in a planning environment.

Each of the Relationship classes, mentioned above, is further refined to lower level classes representing more specific relationships within each category.

Class Hierarchy

The class hierarchies of Constraint and Relationship objects are shown in figure 3.3-4. The lower level Relationship classes are used for the following purpose:

[image: image8.wmf]Resource

Constraint

Environmental

Constraint

Constraint

Activity

Constraint

Relationship

Temporal

Spatial

Parametric

Time

ContainedBy

AbsoluteTime

ValueRelation

StateRelation

State

Transition

Relation

Absolute

Functional

Relative

Absolute

Functional

Relative

Figure 3.3-4 Constraint and Relationship Class Hierarchies

3.3.4 Plan

Description
A Plan represents a ComPASS plan that contains a set of activity requests to be performed by the system within a specific time period. These activities are attached as a collection of Activity objects to the enclosing Plan object. Similar to Activities, Plans have various fidelity levels, the Science Plan being the highest level/lowest level plan for a spacecraft system. The following planning capabilities are supported in ComPASS:

· Several overlapping Plans may reside in the ComPASS database at any time.

· Each user can submit more than one Plan for any scheduling period.

· Scheduling may be performed against a portion of the Plan, coincident with its start time

· Any Plans may be run through the Planner/Scheduler to test its schedulability and other characteristics. However, actual scheduling shall be done against a Master Plan of the System.

· There is only one master plan, represented by the class MasterPlan, in the ComPASS database. User's individual Plans are merged into it before scheduling is performed at a system level.

· Planning may be performed at different fidelity levels, for different time periods into the future.

Some of these capabilities are discussed in greater detail in the following sections

There are two global plan parameters maintained in the ComPASS database at each fidelity level:

a) Plan Horizon, which indicates how far into the past and future the planner has to look to relate Activities and for any other information
b) Active Schedule Boundary, which indicates the time up to which activities have been scheduled, at a particular fidelity level.
3.3.4.1 Contents and Structure of a Plan

In ComPASS, a Plan has a simple structure, as described below:

· A Plan is a collection of Activities, at the same level of fidelity as the Plan. Each Activity may be a CompositeActivity, or an AtomicActivity that is predefined for the system.

· Activities in a Plan may be related to one another by user defined (that is, external) constraints. Activities in a Plan may also be related to Activities in the master plan.

· The nominal duration of a Plan is the time period over which its Activities are to be scheduled. Actual duration may differ from the nominal duration if Activities are moved around at either end of the interval.

· Each Plan has a designated fidelity level. The Plan also maintains a handle to the higher fidelity Plan, referred to as its parent plan (See Section 3.3.2 - Multi-level planning.)

· A Plan contains a ScheduleStatus object, which maintains the scheduling status of the Plan, including a list of references to Schedule objects. This list represents the schedules that have been performed against the specific Plan, and is empty when the Plan is generated.

The Structure of a Plan object is presented in figure 3.3-5.

[image: image9.wmf]Plan

Activity

Schedule

Status

ParentPlan

Figure 3.3-4 Structure of a Plan Object

Class Hierarchy

The class Plan has a simple hierarchy. It embodies a sequence of activities that may represent any plan in the system. It has two derived classes:

(1) Class MasterPlan to indicate a master plan for the system. The MasterPlan adds certain restrictions to general Plan in terms of merging, editing etc.

(2) Class DecomposedPlan, which represents a Plan after it has been decomposed to the lowest nesting level (that is, to Atomic Activities) of each of its Composite Activities. Note that only DecomposedPlans can be submitted for scheduling.

The Plan class Hierarchy is shown in figure 3.3-5.

For convenience, the Plan class is provided with a number of methods to query the system for different types of planned activities, resource usage, and other important information.

[image: image15.wmf]

[image: image10.wmf]Plan

MasterPlan

DecomposedPlan

Figure 3.3-5 Plan Class Hierarchy

3.3.4.2 Merging of Plans

Merging of one Plan with another is implemented by means of updating the first plan with the contents of the second one, where both plans are at the same fidelity level. Two types of merging are allowed:

(1) The Activities in the first plan are added to the second plan, or

(2) The Activities in the first plan replace the Activities in the Second plan within the merge time interval.

Note that merging capability (of the second type) is required to add Activities at the Mission Plan level to already scheduled Activities from the science Plan level.

3.4.4.3 Planning Ranges

To meet the overall science goals of the user community, the ComPASS Framework supports planning of activities within a broad spectrum of time ranges. From a practical standpoint, three different ranges may be supported. They are ShortTerm, LongTerm and (optional) IntermediateRange.

The differences between these planning/scheduling ranges are approximated below:

· LongTerm: A Year to two years in advance. Depletable resources are ignored for planning. Orbital models, and global constraints are considered. Scheduling feasibility and windows of opportunity are determined. In generating a schedule for this period, high level conflicts with other activities are checked out.

· IntermediateRange: A few months (1-3) in advance. Depletable resources are computed using approximations or empirical formulas. Conflicts with other requests must be checked during schedule generation for this phase." Adjustments to the plans by the user are strongly recommended through "Iterative scheduling" during this period.

· ShortTerm: A week or two in advance. All resources are computed as correctly as possible from the mission's Current State vector. All constraints must be satisfied, or the conflicting activities have to be removed from the plan through iterative planning, so that the plan must be decomposable to the lowest level.

Note that for many missions, IntermediateRange planning may be absorbed by either the ShortTerm or the LongTerm planning.

The difference between Short and LongTerm planning, among other things, is due to:

 - Using different models for State Prediction
 - Emphasizing or ignoring certain constraints at the given fidelity level
 - Following different algorithms for resource allocation.

The fidelity of the results used for a planning range increases as we go from distant future to near future in the timeline.

3.3.5 Schedule

Description

A Schedule is a time ordered list of Activities that can be performed by the system to implement a set of goals or objectives. A ComPASS Schedule is generated from a ComPASS Plan by the Planning/Scheduling system, and has the same fidelity level as the Plan from which it is derived. A Schedule, however, is not necessarily conflict-free; the Activities in a schedule may still have resource-related conflicts

In reality, a Schedule is a modified version of the Plan - with the constraints refined such that conflicts between them are minimized or removed. New activities may be inserted, or original ones from the Plan may be deleted in the schedule, for satisfying activity and resource related constraints. For optimization, redundant Activities may be removed from a schedule, or adjacent Activities of same type may be merged together.

Characteristics

· A Schedule object contains a list of Conflicts for each Activity that cannot be scheduled.

· A schedule may be refined iteratively, in multiple cycles, until all the conflicts are resolved and each Activity is assigned a grounded time and a specific duration; although all conflicts should be resolved in schedules at the highest fidelity level.

· Multiple Schedules are possible for the same Plan, depending upon the heuristics and decision paths chosen by the scheduler or specified by the user.

· A higher level schedule does not have to be conflict-free to be chosen for the next lower level planning. The need for a conflict-free schedule should be determined for the fidelity level and planning range under consideration.

Contents and Structure

The class Schedule is structured such that it does not duplicate information contained in its parent Plan. Only changes or modifications from the parent Plan, and definitive values of planned parameters are stored in the Schedule on an Activity basis.

Class "DetailedSchedule" represents full schedule information for a generated schedule. A DetailedSchedule object is created by merging the contents of a schedule with that of its parent Plan. By default, schedules are saved as Schedule rather than as DetailedSchedule objects in the ComPASS database.

A Schedule object has the following components:

· A Reference to the Plan object from which it is created.

· A time ordered collection of ScheduledActivity objects, each one representing a PlannedActivity, which has been scheduled by the scheduler. (See section 3.3.5.1)

· A collection of UnscheduledActivity objects, showing the Activities that could not be scheduled. (See Section 3.3.5.2).

· A collection of ResourceContext objects, each of which represent the known values of system resources defined for each fidelity level, at a given time within the scheduling interval. There are at least two elements in the set; the first one corresponds to the start of the scheduling interval, and is input to the scheduler, the other one being at the end of the scheduling interval and is computed during the scheduling process by the system Model Mediator. (Refer to Section 3.5). The scheduler may optionally save intermediate snapshots of resource usage in a schedule, to speed up the process of partial rescheduling.

· A SessionContext object, which captures various options used by the scheduler in generating the schedule.

· A ScheduleStatistics object with schedule statistics, indicating the quality of scheduling and other pertinent data.

Figure 3.3-6 shows the structure of Schedule and associated Activity classes, the later is discussed in Section 3.3.5.1 below.

[image: image11.wmf]Schedule

Scheduled

Activity

ParentPlan

Unscheduled

Activity

Session

Context

Schedule

Statistics

Resource

StateVector

Planned

Activity

Constraint

Constraint

Violation

Conflict

Scheduled

Resource

Figure 3.3-6 Structure of Schedule and ScheduledActivity Classes

Class Hierarchy

Class Schedule is a leaf class. It does not have any derived classes.

DetailedSchedule is a derived class of DecomposedPlan, which is shown in figure 3.3-5.

3.3.5.1 ScheduledActivity

A ScheduledActivity, included in a Schedule, possesses the following structure:
· References to the PlannedActivities (called the parent Activities) in the Plan from which the Schedule is derived. Note that there may be multiple parents for a Single Scheduled Activity because of optimazation during scheduling.

· A set of Constraint objects, whose values/attributes have been changed from the value/attribute associated with the original constraints for the Activity in the Plan.

· A set of ScheduledResource objects, indicating the duration, and the initial and the final state of each Resource allocated to the Activity, if they are different from values in the ResourceRequest object (attached to the Planned Activity).

· A ScheduleStatus object, specifying the SCHEDULED status, with associated explanations/codes, if any, for the Activity.

3.3.5.2 UnscheduledActivity

An UnscheduledActivity possesses a structure similar to a ScheduledActivity, with the following differences:

· An additional set of "ConstraintViolation" objects, indicating the Constraint in the PlannedActivity that could not be satisfied, making the Activity unschedulable.

· Or, an additional set of Conflict objects, each one indicating the Activities in the Schedule with which it conflicted and associated details, is added. (This is because that conflicts are checked only if an Activity does not violate constraints.)

· The ScheduleStatus object provides futher granularity in the status of the individual activity (scheduled, deleted, conflicting, moved, etc. and associated explanations / codes if any)

Note that Constraint and ScheduledResource objects in an UnscheduledActivity denote the ones that were resolved when the Activity was found to be unschedulable. However, no resources are allocated or reserved for this Activity.

3.3.5.3 Removal of Conflicts from a Schedule

There are two primary ways to deal with Schedules that do not converge to a definite solution - because the constraints associated with the Activities cannot be fully satisfied.

1. Modify the Plan:

- by relaxing the constraints such that the conflicting Activities become schedulable

- by pruning the conflicting Activities

2. Delete the conflicting Activities from the Schedule itself without changing the Plan.

Note that it is possible to automate the second method in the scheduler if the user assigns such permission to the Activities involved.

3.3.6 Conflicts

Description

Class Conflict, representing a Conflict object in ComPASS, indicates the reason due to which an otherwise schedulable Activity could not take place. It is mainly related to resource conflict among various overlapping activities.

Contents and Structure

A Conflict object for a resource contains the following information:

· Resource name

· Requested/required amount

· List of conflicting Activities, with the duration and amount of usage of the resource

During the scheduling phase, the scheduler receives conflict-related information from the Model Mediator, as discussed in section 3.5.

3.4 Interface with a Planner/Scheduler

The Plan Language, described in Section 3.3, represents the global view of the ComPASS Planning database. The Planner/Scheduler(s) must be able to access, process and update contents of this database. Since each Planner/Scheduler has its own, specific plan representation (which may even be implemented in a different programmatic language from the ComPASS language), capability is required to perform the translation from the global form to the native form and vice versa. The ComPASS Plan Mediator provides this capability.

3.4.1 Role of the Plan Mediator

The Plan Mediator provides a three-fold service in the ComPASS framework:

(1) Translate from the global plan language to the Planner/Scheduler's native language, across object representation and language of implementation.

Although high level objects such as a Plan or an Activity in ComPASS may map somewhat directly to an equivalent object of a chosen P/S system, the attributes and internal structures will be different. So a detailed mapping and conversion is required for components of a Plan, and its reverse for a Schedule, which is received from the Scheduler and saved in the global database.

In addition, the scheduling systems such as Spike and ASPEN are written using Common Lisp Object System (CLOS) and C++ respectively, whereas other ComPASS components are written in Java. Thus, the translation must be performed in such a way that the new objects could be directly converted, via CORBA object transformation mechanism, to objects in the planner's implementation language

(2) Preprocess ComPASS plans, if feasible, to provide planning capabilities missing in the Planner/Scheduler

The Planner and Scheduler, used in the ComPASS framework, must satisfy certain core capabilities. Other capabilities, specific to a Planner/Scheduler, may be available through ComPASS through selectable options. However, if the Planner lacks some necessary capability (such as creating Activities based upon periodicity stated in an Activity), the mediator will attempt to provide this capability, by augmenting the transformation of a plan to its native representation.

(3) Conform to the COVE distributed architecture

The COVE architecture, adopted for ComPASS, imposes a set of access restrictions to individual fields of an object as well as to the objects themselves. The Plan Mediator will handle these access and update issues on behalf of the P/S system.

Figure 3.4-1 shows the role of the Plan Mediator in the ComPASS framework.

[image: image12.wmf]GUI Tools

Client Goals

1

2

n

1

2

n

Activities

Client Plan

ComPASS

Plan

Mediator

Planner

ComPASS

Representation

Client Plan

Planner

Representation

1

2

n

Decomposed Plan

Level 0

Planning

Scheduler

Atomic Activities

Scheduled

(Atomic)

Conflicts

Schedules

Schedules

ComPASS

PersistentStore

P/S Native Database

Figure 3.4-1 Plan Mediator in the ComPASS framework.

Note that a unique Plan Mediator has to be developed for each Planner/Scheduler set used in the ComPASS. The Planners and Schedulers that are components of the same system are expected to communicate using the same native plan language so that no additional transformation to ComPASS representation is necessary from the Planner output to the Scheduler input. (Otherwise, an additional level of translation will be required from one native form to another.) Initially, ComPASS will use only these Planner/Scheduler combination systems.

3.5 Interface with the Mission Model

A Mission Model is used in ComPASS to provide information on mission-related data, resource-related data, and environmental data, (Examples are: Orbital and Attitude control information, battery capacity and usage profile, Cloud Cover information, etc.). This Model is used by planners, schedulers and various client programs to determine the time of occurrences of many Activities, as well as for predicting the resource usage by a planned Activity.

The way a Model is used by the Planner/Scheduler varies from one planning system to another. Among the P/S systems studied by the ComPASS team, this interaction is known to occur in one of the following three ways:

1) The Model is built into the scheduler, so that the information exchange between them is local and thus highly efficient. The disadvantage is that considerable amount of work is necessary in adapting the scheduler to a different mission or a different Model. (Example: Spike)

2) The Model is primitive. Resource usage is determined through crude, approximate means and specified in the Activity's request usage itself. No dynamic interaction exists between the planner/scheduler and the Model. (Example: Aspen)

3) The Model runs as an independent entity (either locally or remotely) and the scheduler and/or planning tools query it for necessary information. (Example: STK Model, EOS scheduler)

Due to the generic and adaptable nature of the ComPASS planning framework, and the distributed environment in which it operates, the third mode is the logical choice for ComPASS. However, this also has the potential of being slow and inefficient due to the overhead of underlying communication and data transfer protocols. Thus, optimization is required in this area.

In the following paragraphs, Model-related objects, and the current design of the interaction between the Scheduler and the Model is depicted for ComPASS. Optimization will be performed as we gain more experience with the chosen scheduler and Modeling systems.

3.5.1 Model Mediator

The Model Mediator is an interface through which the Planner/Scheduler interacts with the Mission Model. This module is envisioned to be running in the user's local node as an integral part of the P/S system, or as an independent application. It possesses the knowledge of the Resource Models built for the system and queries them for any related information. Any client application may use the mediator for resource related query operations.

The Model Mediator is responsible for creating the mission's Global Resource object and updating its status and predicted states over the Planning horizon - usually by talking periodically to an actual Model generator such as the STK or Flight Dynamics Facility. It is also responsible for creating and using a Time Line Builder (see below) which maintains the predicted resource usage for the schedule being generated.

3.5.2 Resource Timeline Builder

The Resource Timeline Builder is an object responsible for maintaining the usage of each resource over a period of time, in the context of the schedule being generated. This object does not interact with the Resource models directly, but builds the timelines based upon the information provided to it by the Model Mediator.

3.5.3 Invocation of the Model Mediator

The Model Mediator operates using the ComPASS Model Language, which describe the Resource Models, their interfaces, and the interfaces to the Mediator itself. The design and details of the Model Language will be provided in a separate ComPASS document. The paragraphs below provide only a high level view of the connection between a Plan and the Mission Model.

The Model mediator is invoked in two different contexts: (a) to build the resource usage timeline mentioned above, and (b) to query the usage of certain resources over a given time interval. The procedures are as follows:

Building Resource Timelines

To perform this activity, the Planner/Scheduler establishes a session with the mediator, and passes it a session context. The session context holds information such as:

· Planning horizon

· Plan's time interval

· Planning fidelity level

· Degree of accuracy needed in determining the resource usage.

(The last item is intended to help in performing certain trial runs, or for LongRange Scheduling where usage of certain resources cannot be predicted accurately, and/or may not be necessary.)

In addition, the "initial" ResourceContext is passed to the Model Mediator at the start of the session (see Section 3.3.???). This object is used to establish the initial value of system resources at the start of the scheduling interval.

At the occurrence of a time node in a Plan's timeline (that is, at the start of an Activity), the Scheduler sends resource requests to the Model Mediator. This request information includes:

· name and duration of requested resource

· amount of resource needed (for reservation type resources only)

· handle to a context object associated with each request (to be saved and later returned to the caller).

For sharable and depletable resources, the amount of resource to be used will be determined by the Model Mediator by calling the ResourceModel objects. At each node in a resource timeline, the following information is saved:

· time of occurrence

· total amount of resource used

· a list of consumers of the resource, each showing the amount of use, duration of usage, and the consumer context

(The amount of usage and the list of consumers at a node get updated if new nodes are inserted for the resource prior to it in the resource timeline. This is expected to happen frequently during a scheduling session.)

Whenever the Model Mediator cannot satisfy a resource request, it may optionally return the list of consumers of that resource, with whom the conflict occurs, to the Scheduler. In the final scheduling cycle, the Scheduler saves this information as "Conflicts" (see section 3.3.???) associated with a rejected Activity.

At the end of the scheduling operation, the Scheduler terminates the session with the Model mediator, which returns it the final ResourceStates corresponding to the generated schedule. The Scheduler may also query the Mediator for ResourceStates at intermediate points in time, to help in pruning or editing of activities and rescheduling a portion of the plan.

Querying the Model Mediator

The Model Mediator may be queried at any point in time by the Scheduler (or any other application that has established a session with it) to get information on the usage of system resources over a certain time interval. This is useful in the Scheduler's ability to make an ad hoc decision on when to place an Activity in a schedule.

If no ResourceContext object is provided at the establishment of a session, the Resource Timelines from the mission's approved schedule will be used. [This will be helpful in making a quick decision if a new Activity should be added to the already approved schedule on an emergency basis.]

This query capability will be also be used to retrieve Target, Flight and Orbital information for the spacecraft itself, which is treated as a "global" resource under ComPASS. (See Section 3.6.1)

3.6 Underlying Concepts

This section describes a number of concepts and objects that are used by, or built into the Plan Language to serve a number of important ComPASS objectives:

3.6.1 Use of Spacecraft as a Global Resource

For ComPASS applications involving spacecraft missions, the spacecraft itself may be regarded as the top-level resource, whose decomposition yields the spacecraft subsystems such as the attitude control subsystem, power subsystem etc. This resource is modeled by the ComPASS SpacecraftModel object, which either possesses knowledge of the spacecraft and its properties, or obtains that from an appropriate "Model Server". Basic information related orbital parameters, attitude data, etc. can be obtained by querying this model. This design simplifies the integration of Models into the Planning/Scheduling framework.

In dealing with environmental constraints for a planned Activity, the EnvironmentObject module internally uses the global Spacecraft resource, and hence the SpacecraftModel, if the constraint applies to the spacecraft orbits or attitude.

Note that even for systems other than spacecraft missions, the general concept of treating the top level object as a global resource is useful, as it provides a means to query for system's properties and policies.

3.6.2 Maintenance of the ResourceContext

A ResourceContext, discusses in sections 3.3.5 and 3.5, encapsulates the predicted usage of system resources - known at a certain fidelity level - at a given point in time. Thus, each schedule has to be supplied with an initial vector object corresponding to the schedule start time ti, from which point the resource usage would be propagated in time following the resource requirements of the scheduled activities. At time tf, the completion time of the schedule, the propagated
In addition, for iterative scheduling or handling schedule updates, it is useful to save the ResourceContexts at intermediate points in scheduling. In that case, the changes can be computed starting from an intermediate time point, rather than from the start, as shown in figure 3.6-1. Note in saving the vectors, the frequency or conditions for the savings can be specified as an optional parameter to the scheduler.

[image: image16.wmf]Saved ResourceContext

Activity Start

Initial Schedule

Time

Updates

to Schedule

Legend:

Figure 3.6-1 Rescheduling from an Intermediate Point in a Schedule

3.6.3 Failure Message Capture and Propagation

A utility object, called the StatusReporter is used in ComPASS, from within other object, to capture and save messages related to failures due to errors and other reasons (such as: invalid/unassigned fields, unknown objects, unstatisfied constraints, etc.) , reported by different nested objects, and from different methods of an object during processing. StatusReporter is a composite object, where each component represents the returned status, consisting of a status code and message at a certain nesting level in the method call stack. Its structure is shown below:

[image: image17.wmf]Saved ResourceContext

Activity Start

Initial Schedule

Time

Updates

to Schedule

Legend:

Figure 3.6-2 Structure of a StatusReporter Object
For a normal status return from low level objects, no messages are expected to be added the StatusReporter; however, all failure, warning and error messages encountered by an object should be added to an associated StatusReporter object. Class StatusReporter's public methods provide the ability for an object to retrieve status from the lower level calls and add to its own statusList collection. This object then adds its own status code and message based upon the status returned from the next lower level calls.

StatusReporter can return the error codes and messages to its caller to any specified depth. Thus, when a planning/scheduling operation fails, the error message may be retrieved from the associated object, to the level of detail desired by the application.

3.6.3.1 Status Feedback to the User

In order to return the status of the Activities requested by the user in a Plan at various points in the planning/scheduling cycle, the Plan Language uses an ancillary object, named UserInfo, which maintains a number of attributes related to a user of the system. These attributes include:

· User name and address

· User Priority (if assigned)

· Contact points

· Condition under which to contact (success, failure, conflict, always, etc.)

· Method of contact

Each Planned Activity in the ComPASS system maintains a handle to its UserInfo object. When scheduling is complete, the status of each Activity, along with associated ErrorReporter objects, if any, is saved in the ComPASS global database. Operational tools may then be developed and used to retrieve and send the scheduling status/errors automatically to each user in accordance with the protocols in their UserInfo object.

4.0 Java Implementation of the Plan Language

The ComPASS Plan Language, with its object-oriented design, is implemented in the Java programming language, for the following benefits:

· Java provides an easy mapping from the Plan Language design to implementation.

· It makes the language directly usable from other Compass components, including the GUI clients, which are built as Java applications.

· For components and tools written in other languages supported by CORBA/IDL (for example: a Plan Mediator which might be written in C++ or CommonLisp for easy interface with a Planner/Scheduler written in those languages), the Java objects may simply be transformed to objects in those languages.

· TBD: (Any other suggestions?)

There is a one-to-mapping of the Plan Language top-level components, discussed in the Design Section 3.3, to its Java implementation classes. For convenience and ease of understanding, these classes are given the same name as their design counterparts, with a PS prefix. (The 'PS' prefix is intended to distinguish them from classes of the same name used within other internal or external components of the ComPASS system.)

The implementation class hierarchies are created parallel to the design hierarchy of the language components, and therefore, are not repeated in this section. Note that the PS prefix is not propagated to lower level implementation classes.

Section 4.1.1 presents the main attributes and public methods of some important implementation classes and/or interfaces. (This section is incomplete, since not all implementation classes have been fully designed yet.) Section 4.1.2 shows the default textual representation of each class.

4.1 Specification of Plan Language Classes

All Plan Language classes are defined in the Java package

gov.nasa.gsfc.compass.planlanguage.

Main attributes of major classes are presented below. For brevity, the following public methods, common to each class, are not shown:

· get…() and set…() - These public methods are implemented for the appropriate fields in each class.

· toString() - This method returns a formatted string with the values/attributes of an object instance. The primary purpose of this method is to provide complete information about the object, valuable for testing or debugging, but not necessarily for generating reports at various levels of detail. This toString() representation for each class is shown in Section 4.1.2.

· validate() - This validates an object to make sure that all mandatory fields are specified and all assigned fields have valid values. Throws exceptions for invalid objects.

Note: Most of the class objects are created by providing a small set of arguments in the constructor, and then setting each field through a set…() method.

Before using the object, the caller should invoke validate(). (This is intended to help in the program development phase.)

4.1.1 Utility classes

The following utility classes and interfaces are used to represent low-level objects in the Plan Language.

· AllowsUnknownValue

This interface is applicable to objects that are not yet assigned a current value, or whose values are not yet resolved. It throws an exception if the value field of the object is accessed through a get() method prior to assignment. It provides a getState() to query determine if a value is assigned or not.

· CompositeObject

This is an interface to represent the behavior of composite objects where the components themselves belong to the same composite class and are made up of lower level components. (Refer to the Composite Class in the book DesignPatterns.) Plan Language classes CompositeActivities, PSConstraints, and CpsError implement this interface.)

· Time - Classes representing 'Time" in various forms, derived from Java 1.2 Time-related classes. Resolution is at milliseconds. Implement the AllowsUnknownValue interface.

CpsDate - A calendar date

TimeDifference - Time difference between two dates

TimeInterval - A start time and an end tine

· CpsBinaryTree is an interface which extends Composites

· CpsValue - A class that represents a numeric, string, state, or time value, with associated valid list (domain values), which are checked anytime that a value is set in the object. The valid list could be composed of discrete values or ranges.

· CpsParameter - Represents a generic parameter with a name, and value(s) represented by CpsValue. The parameter may be a Scalar or a Vector parameter.
· CpsMessage - A class to represent an error, warning, or information message, with the following fields: messageType, messageCode, messageText, and pointOfOrigin within the source code.
· CpsStatus - Implementor of the StatusReporter object, discussed in Section 3.6.Uses the CpsMessage class to report an error or other messages. Provides protected methods to CpsMessage objects and public methods to retrieve them.
· TypedArrayList - A derived class of Java ArrayList which enforces that a only a certain types of objects (say, PS Activity objects) be put into the list.

· BooleanNode - An implementation representing objects which may evaluate to TRUE or FALSE. (Used for representing Constraints and Relationships)

· LogicalLinkedList - A derived class of Java LinkedList where the elements are BooleanNode objects, and all links represent a specific logical relation, either AND or OR. (Used for representing alternate decompositions in an Activity)

4.1.2 PSPlan

PSPlan provides the top-level implementation class for Plan, shown in figure 3.3-5.

It is an abstract class.

PSPlan uses a class named ActivityRep to represent an Activity in a Plan, described in this section.

public class PSPlan {

Fields:

final int fidelityLevel;

// fidelity level of the plan

final int type;

// A User Plan or a MasterPlan

TimeInterval duration;

// Nominal Time Duration

final PSPlan parentPlan;

// Higher level plan from which it is derived

// null for a highest level plan

TypedArrayList activityList;

// list of ActivityReps for planned activities

ScheduleStatus scheduleStatus;
// scheduling Status of the plan

Public Methods:

PSPlan(int fidelityLevel, int type, PSPlan parentPlan);

// Constructor for a PSPlan object

/*** dealing with Activities ***/

addActivity(PlannedActivity activity);

deleteActivity(PlannedActivity activity);

TypedArrayList getActivityList()

// return the handle to the list of PlannedActivities

TypedArrayList getActivities(int activityType);

// return the list of Activities of a given type (Science/Enginnering, …)

TypedArrayList getActivities(String user);

// return all activities for a user

TypedArrayList getActivities(TimeInterval t) -

// return all activities listed within given time interval;

// checks for Temporal constraints of Activities with unspecified time

/*** Merging Plans ***/

mergePlan(PSPlan extPlan, boolean copy) -

// add Activities from extPlan to self; make duplicateof the Activities

// if copy is true, else, transfer the objects themselves,destroying extPlan

PSPlan createPlan(TimeInterval tv)

// return a new Plan by including activities from self, within given interval

/** Expansion to Atomic level - to be invoked by a Planner ***/

DecomposedPlan decompose
()

// return the decomposed version, with AtomicActities at this level

}

public class SystemPlan extends PSPlan {

/**

 This is a derived class of PSPlan, and is a concrete class, with the additional fields and

 methods. It is given a planID by the creator as a string value. If no ID is provided, a defaultID is generated in the constructor, based upon the current time. Note that the ID should be unique for easy reference, but uniqueness is not mandated.

 ** /

Fields:

Final String
planID;

// for reference by user

TimeInterval
planHorizon;

// for referencing other activities

Methods:

SystemPlan(String planId, int fidelityLevel, PSPlan parentPlan);

// Constructor for a SystemPlan object

}

public class MasterPlan extends SystemPlan {

/**

This class represents a MasterPlan in the system at a designated fidelity level. For Operational convenience, it possesses a field called 'usage', which could be OPERATION or TEST. For operations, a single MasterPlan is allowed in the database at any fidelity level

A MasterPlan has a field 'backup' which allows for one or more operational backup plans. However, it is regarded to be in secondary storage only, no actions are performed against a backup plan unless it is brought to a primary level.

A MasterPlan can be manipulated by authorized users only.

**/

Fields:

int
usage;

// enumerated: OPERATION/TEST

int
storage;

// enumerated: PRIMARY/BACKUP

Methods:

makePrimary();

// send previous one to backup storage

makeOperational();

// must be made primary first

}

protected class ActivityRep {

/**

 This is a wrapper class around a PlannedActivity, which is necessary so that the same Activity may be used in more than one plan, yet maintain the ID of its parent plan.

** /

Fields:

PSPlan planId;

// Identifier of the plan containing an Activity

PlannedActivity;

// reference to an Activity

}

3.1.3 PSActivity

/**

This class represents the abstract baseclass for all Activity classes in the Compass framework. It has a inner class named ActivityInfo which maintains all ancillary

static information about an Activity.

The collections maintained in a PSActivity are constructed separately by using the public methods of class TypedArrayList.

**/

protected class ActivityInfo {

Fields:

final String name;

// Activity name

String description;

// Activity description, for user info

String purpose;

// Purpose, for user info

int usage;

// enumeration: SCIENCE, HEALTH/

// SAFETY, MISSION,.., for user queries

final int fidelityLevel;

// 1...n for low, med, high etc.

int nestingLevel;

// how deep at same fidelity level?..

int defaultVisibility;

// ALL vs. OWNER-ONLY

int[] defaultPermissions;

// permissions to Scheduler to move, delete..

}

public class PSActivity {

Fields:

CpsDate startTime;

// nominal activity start time,

// unresolved if temporal dependency

TimeInterval duration;

// nominal activity duration

TypedArrayList paramList;

// List of parameters

TypedArrayList resourceList;

// request for resources

TypedArrayList internalConstraints;

// internal constraints

TypedArrayList subActivities;

// Lower level

Public Methods:

PSActivity(ActivityInfo activityInfo);
// constructor

}

public class ActivityTemplate extends PSActivity {

/**

An ActivityTemplate is used as a prototype for both Atomic and Composite Activities, to be included in a SystemPlan. These PlannedActivities maintain reference to objects in the templates, rather than cloning them. Thus, if an Activity is edited, the editor has the option to change the Template on-line (with the same version), or to create a new version. by cloning it (which always returns a new version number) and then editing the cloned version. If changed on-line, it will be propagated to all referring activities in the system plan. If a new version is created, that will be used as the reference only by new PlannedActivities.

ActivityTemplate with sysem level visibility should be edited by authorized personnel only.

Fields creator, creationTime and lastUpdateTime are for operational use only - they are not used by any other components of the Plan Language.

**/

Field:

final int version;

// tracks older versions in DB, if still in use

final CpsUser creator;

// who created the template

final CpsDate creationTime;

// Time when originally created

CpsDate
lastUpdateTime;
// Time when last modified

final int activityType;

// Template for Atomic/Composite Activity

Methods:

ActivityTemplate(ActivityInfo activityInfo);

// constructor

ActivityTemplate(String name, int fidelity);

// creates an activityInfo obj

setDefaultVisibility(int visibility);

// … and sets its fields

set DefaultPermission(int[] permissions);

setInfo(String description, String purpose, string usage);

ActivityTemplate clone();

// return a deepcopy of all owned objects and

// with a new, highest version number

}

public class PlannedActivity extends PSActivity {

/**
This is the abstract parent class for Atomic and Composite classes. The fields and methods below indicate the ones added to that of its baseclass PSActivity.

UserInfo field provides a reference to the user using this activity.

If an Activity is created from an ActivityTemplate, its internal fields such as the internal constraints, sub-activities, resource requests etc. cannot be changed through set…() calls.

**/

Fields:

final CpsUser user;

// Reference to user who submitted it

TypedArrayList externalConstraints;

// external constraints

ActivityTemplate referenceTemplate;
// null if no template used

PSPlan parentPlan;

// Plan in which self is contained

PlannedActivity[] parentActivity;

// higher level activity(ies) in its

// decomposition tree

int priority;

// defaults to a system priority

Methods:

PlannedActivity(ActivityInfo activityInfo, CpsUser userInfo);

// constructor to create a new Activity from scratch

PlannedActivity(ActivityInfo activityInfo, String userName)

throws UnknownCompassUserException;

PlannedActivity(ActivityTemplate template, CpsUser userInfo);

// creates a by using the template as a reference

PlannedActivity(ActivityTemplate template, String userName)

throws UnknownCompassUserException;

int setPriority(int newPriority);
// elevate up to user's max. priority

TypedArrayList getSubActivities();
// to be provided in derived classes

TypedArrayList decompose();
// to be provided in derived classes

}

public class AtomicActivity extends PlannedActivity {

/**

 This class represents the lowest level (leaf) Activities at a given fidelity level.

 Its constructors are the same as its super class and are not shown here.

The subActivities list, if non-null, indicates the decomposition of the Atomic into next (higher) fidelity activities. Otherwise an exception is thrown, based upon Mission configuration.

 **/

Methods:

TypedArrayList getSubActivities();

// returns null

TypedArrayList decompose ();

// returns null

TypedArrayList getNextLevelActivities()
// returns subActivities if not null

throws AtomicDecompositionNotSupportedException;

}

public class CompositeActivity extends PlannedActivity {

/**

 This class represents a CompositeActivity at a given fidelity level.

 Its constructors are the same as its super class and are not shown here.

 **/

Methods:

TypedArrayList getSubActivities();

// returns subActivity List

TypedArrayList decompose();

// returns lowest level Activity list

}

public class PeriodicActivity extends CompositeActvity {

/**

 This class represents a recurring or periodic activity, which is composite

 activity where the sub-activities are composed of similar activities, bound

 by constraints depending upon the periodicity specification.

 The decomposition vector may be generated and filled in automatically

 at the creation of the plan, or may be generated and filled in dynamically

 by the planner/scheduler later, through queries to the sysem's model objects.

 The constraints are then derived from the periodicity rules.

 **/

Fields:

PSPeriodicity rule;

PSActivity
activity;

Methods:

PeriodicActivity(PSActivity recurringActivity, PSPeriodicity recurrenceRule);

// uses recurringActivity as the subActivity

}

public class PSPeriodicity {

/** Defines Periodicity attributes to be attached to an Activity*/

Fields:

TimeInterval
nominal Period;

// nominal start and stop times

}

public class TemporalPeriodicity extends PSPeriodicity {

{

/** Define periodicity as "number of times' within a given time range **/

Fields:

int
minOccurrence;
// min times to occur

int
maxOccurrence;
// max times to occur

DeltaTime minDiff;

// min time diff between activities

DeltaTime fMaxDiff;

// max time diff between activities

}

public class TimePeriodicity extends PSPeriodicity {

/**

Define periodicity as 'at specified interval' in the given time. 'initLast'

implies the initialization point as the time of occurrence as the scheduled time

of the last activity of the same type, effectively extending Activity's nominal period.

 **/

Fields:

Boolean initLast;

// true => initialize from last occurrence

DeltaTime interval;

// recurrence time intervals

}

public class OrbitalPeriodicity extends PSPeriodicity {

/**

 Define periodicity as a function of orbital period such as perform every nth orbit,

 after a specified interval from orbit Start, etc.

 'initLast' indicates the initialization point as from last time of occurrence of this type of activity

 **/

Fields:

int
orbitFrequency;
// schedule every nth orbit

DeltaTime startAfter;

// after orbit start

boolean initLast;

// true => start from last scheduled occurrence

}

public class ConstraintSatisfactionPeriodicity extends PSPeriodicity {

/**

Allow an activity to occur any time a specified set of constraints are satisfied

within the given planning interval. (The activity is not specified here)

For example:

schedule (the recurring Activity) anytime B occurs 10 minutes after A,

schedule (the recurring Activity) 3 minutes prior to any occuence Activity B.

**/

Fields:

PSConstraint constraintSet;

// set of constraints to satisfy

}

4.1.3 PSConstraint
/**

 Represents a Constraint defined through a set of relationships placed on any object.

 Constraints are Composite objects, only the leaf nodes have Relationships

 PSConstraint is an Abstract class.

* /

public class PSConstraint implements CpsBinaryTree {

Fields:

PSConstraint[2] subnodes;

// two lower branches(null for leafnodes)

LogicalLink
linkType;

// AND or OR relation between nodes

Evaluation
value;

// True/False/Unknown (initially)

Methods:

Evaluation evaluate();

// evaluate self - through recursion

}

public class LeafConstraint extends PSConstraint {

Fields:

Relationship
relationship;

// top of relationship tree

Methods:

Evaluate();

// invoke evaluate on relationship

}

public class ActivityConstraint extends LeafConstraint {

Fields:

final PSActivity activityRef;

// referenced, independent activity

}

public class ResourceConstraint extends LeafConstraint {

Fields:

final Resource resource;

// resource to be checked for value/state…

}

public class EnvironmentalConstraint extends LeafConstraint {

/**

 EnvironParam is an enumerated type defining different types of supported entities,

 e.g. ORBITAL, ATTITUDE, TARGET, CLOUDCOVER, … for the mission

**/

Fields:

final
EnvironParam envParam;

// what to check for

}

4.1.4 PSRelationship

/** Class PSRelationship represents a Relationship, which has large number of

* derived classes, for implementation different types of relationships possible among

* objects. Relationships possess a BinaryTree structure and evaluate to true or false

* at each node which are connected through a logical AND/OR Link.

* PSRelationship is an Abstract class.

*/

public class PSRelationship implements CpsBinaryTree

{

Fields:

PSRelationship[2] subnodes;

// the two branches (null for leafnodes)

LogicalLink
linkType;

// AND or OR relation between subnodes

Evaluation
value;

// True/False/Unknown (initially)

Methods:

Evaluation evaluate();

// evaluate self - implemented in subclasses

}

//

// Shown below are only the leaf Relationship classes of Figure 2.4-3

//

public class AbsoluteValueRelation extends ValueRelation {

/** Example: x = 5; where x is the parameter name **/

Fields:

CpsValue
theValue;

// absolute value of the parameter

}

public class RelativeValueRelation extends ValueRelation {

/** Example: x = y+5 **/

Fields:

Object

refObject;

// parameter with its own value (y)

CpsValue
relativeValue;

// + or - difference from refObject (+5)

}

public class FunctionalValueRelation extends ValueRelation {

/** Example: x = c.f(y)

 Note that these functions are names of static methods of known Java classes **/

Fields:

String
evaluator;

// name of a class that evaluates it

String
functionName;

// function to be invoked by evaluator

Object[] parameters;

// parameters to be passed to the function

}

//

// Similar structures for derived classes of StateRelation, which represent the following:

//
AbsoluteStateRelation: state = OPEN

//
RelativeStateRelation: state = stateof(B)

//
FunctionalStateRelation: state = f(temperature)

//

public class StateTransitionRelation extends ParametricRelation {

/** may be used for specifying Resouce constraints through needed transitions

Fields:

State
initialState;

State finalState;

Activity activity;

// reference to activity to perform the transition

}

//….

public class TimeRelation extends TemporalRelation {

/** Examples: start before, start after, end before, end after */

{

TemporalType
 type;

// enumerated types

DeltaTime
 timeDiff;

// positive time diff

DeltaTime
 tolerance;

// flex time

Object

 refObject;

// to whose time it is related

}

public class TimeRelation extends TemporalRelation {

/** Examples: start-before, start-after, end-before, end-after **/

Fields:

int

 eventType;

// Start or End event

DeltaTime
 timeDiff;

// + ve or -ve time diff

DeltaTime
 tolerance;

// flex time

Object

 refObject;

// to whose time it is related

}

public class ContainedByRelation extends TemporalRelation {

/** Examples: start-before and end-after, start-after and end-before

 Note: sign of the two DeltaTime parameters must be opposite

**/

Fields:

DeltaTime
 startTimeDiff;

// timediff at start

DeltaTime
 endTimeDiff;

// timediff at end

DeltaTime
 tolerance;

// flex time

Object

 refObject;

// to whose time it is related

}

public class AbsoluteTimeRelation extends TemporalRelation {

/** Example: start or end at a specific time

**/

Fields:

int

 eventType;

CpsDate
 occurTime;

// time of occurrence

DeltaTime
 tolerance;

// flexibility in time of occurrence

}

4.1.5 PSConflict

Currently, there is only a single class representing Schedule conflicts.

public class PSConflict {

/**

 This class implements Conflict objects indicating conflict for a named resource.

Note: ResourceAllocation objects are returned from the Resource Timeline builder .

**/

Fields:

PSResourceReq resource;

// ref. to the unsatisfied resource request

ResourceAllocation[] allocations;
// who is allocated how much

}

public class ResourceAllocation {

/** Indicates the allocation of a named resource to schedulkedActivities **/

Fields:

{

final String
 resourceName;

// name of resource

ScheduledActivity activity;

// to whom allocated

CpsValue
amount;

// allocated amount

TimeInterval
duration;

// period of allocation

}

4.1.6 CpsUser

The CpsUser class is used to save informnation related to a ComPASS user.

Public class CPSUser {
/**

 This class represents a user of the ComPASS system, and is referenced for authorization of various planning/scheduling steps within the context of Activities and Plans.

It is also referenced to return status to the user after certain P/S operations are completed.

The "maxPriority" and "minPriority" fields indicates the highest and lowest priorities that may be assigned to an activity request submitted by this user.

The set…() methods for this class may be used by authorized personnel only. It cannot be changed be the Planning/Scheduling objects.

Further details on this class are to be specified later.

**/

Fields:

Final String userName;

// name of user

String
password;

// if password authorization is needed

String
userAddress;

String
emailAddress;

// for email

String
telephone;

// for dialup

int

maxPriority;

// priorities assignable to an…

int

minPriority

// … activity

 int[]
contactSteps;

// enumerated codes for operation steps…

// … after which to send status

 int[]
statusCodes;

// statys codes under which to contact

}

4.2 Textual Representation of Plan Language Objects

This section provides a textual representation of certain Plan Language classes, incorporated as toString() class methods, which returns a String containing the attributes of each object. Note that toString() is not recursive, that is, nested objects such as a CompositeActivity does not recursively invoke the toString() method of its subcomponents. An overloaded method, toString(int nesting), is provided to print attributes of the object and its sub-objects, specifically useful for program development and maintanance.

Report generation of Activities and Plans, with different levels of detail and with various formatting and presentation layouts, may be deligated to a set of Visitor classes (following the pattern in the DesignPatterns, Gamma et. al. book).

Use of XML and/or HTML for textual representation of Plan Language objects will be helpful in a network environment, and will make the text easily parseable, to be used as input to the system if necessary. These options, and Visitor classes will be considered in the future.

 PSActivity.toString Format:

 ACTIVITY

 ACTIVITY INFO

 <ActivityInfo>

 START: <startTime> END: <endTime> <startTime>

 FIDELITY LEVEL: <fFidelityLevel>

 REQUESTER: <fUser>

 VISIBILITY: <fVisibility>

 PERMISSIONS: <fPermissions>

 PERIODICITY

 <rule>

// Rule for Periodic scheduling

 PARAMETERS

 <paramList>

// specify each input parameter

 INTERNAL CONSTRAINTS

 <internalConstraints>
// iterate over List

 EXTERNAL CONSTRAINTS

 <externalConstraints>
// iterate iver List

 RESOURCE REQUESTS

 <resourceList>

// Requested Resources

 SUBACTIVITIES

 <subActivities> | NONE
// next Lower Level Activities

Example: See PlanningLanguageInScenarios

SpatialRelationship.toString format:

 <Object> <SpatialRelationType> <DeltaLocationRange> <Location>

 Example:

 Camera FOV is within 5 degrees of Sirius

 where <Object> = "Camera FOV"

 <SpatialRelationType> = " within"

 <DeltaLocationRange> = "5 degrees"

 <Location> = "Sirius"

Appendix A: Plan Language in Planning Scenarios

[image: image18.wmf]Client

Interface

Spacecraft

Models

Plan

Database

Science

Planner

Mission

Planner

Client

Interface

Client

Interface

Client

Interface

Client

Interface

Client

Interface

Orbital

Models

This section shows how the proposed ComPASS planning language can be used to express planned and scheduled activities. The planning scenarios range from scheduling simple observations to planning multiple observatory observations.

A. Basic sequence

Scientist A wants to schedule a procedure on a spacecraft. This procedure requires that:

1. the heaters are turned on

2. the instrument is turned on after it's temperature has reached zero degrees centigrade (the wait may have to be modeled as a time delay if there is no way to close the loop with a temperature measurement).

3. the instrument is left on for 5 minutes

4. the instrument is turned off

5. the heater is turned off

Scientist A names this procedure "Five Minute Measurement."

ACTIVITY

 ACTIVITYINFO

 NAME: FiveMinuteMeasurement

 DESCRIPTION:"Everything needed to do a measurement."

 PURPOSE: "Observation of star clusters"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: ADASTRA // ADASTRA is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: DELETE // defautls can be user

 PERIODICITY

 TYPE: ONCE // Default

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBS

 EXTERNALCONSTRAINTS // Defined by user

 From Subactivities

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Subactivities

 RESOURCEREQUESTS // Pre-defined for the type of activity

 From Subactivities

 COMPOSITION: COMPOSITE

 SUBACTIVITIES // Pre-defined or user can define them for activity templates

 HeatersOn(

 duration = 0 to 5 MINUTES)

 InstrumentOn(

 duration = 5 MINUTES,

 EXTERNALCONSTRAINTS= (STARTS AFTER HeatersOn), (temperature EQUALS 0 CENTIGRADE))

 InstrumentOff(

 EXTERNALCONSTRAINTS=(STARTS AFTER END OF InstrumentOn()))

 HeatersOff

 EXTERNALCONSTRAINTS=(STARTS AFTER END OF InstrumentOff()))

B. Repeated sequence

Scientist B wants to schedule "Five Minute Measurement" procedure for 5 executions spaced 30 days apart.

ACTIVITY

 ACTIVITYINFO

 NAME: FiveFiveMinuteMeasurements

 DESCRIPTION: "Do FiveMinuteMeasurement one every 30 days until 5 measurements have been made."

 PURPOSE: "Observation of variability in star clusters"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: ACOHORT // ACOHORT is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: DELETE // defaults can be user

 PERIODICITY

 TYPE: MULTIPLE

 INTERVAL: 30 DAYS

 REPEAT: 5

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBS

 EXTERNALCONSTRAINTS // Defined by user From Subactivities

 INTERNALCONSTRAINTS // Pre-defined for the type of activity From Subactivities

 RESOURCEREQUESTS // Pre-defined for the type of activity From Subactivities

 COMPOSITION: COMPOSITE

 SUBACTIVITIES // Pre-defined or user can define them for activity templates

 FiveMinuteMeasurement

C. Two observations with re-aiming

Astronomer C needs a couple observations from an instrument on a spacecraft. He doesn't care which order they are accomplished, but the observations need to be taken as close together as possible. He needs a 5 minute exposure of the region centered on star X and a 7.5 minute exposure of the region centered on star Y.

NEEDS WORKS

ACTIVITY

 ACTIVITYINFO

 NAME: TwoObservations

 DESCRIPTION: "Make 5 minute exposure of X and 7.5 minute exposure of Y close."

 PURPOSE: "Compare spectra of X and Y"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: MMIX // MMIX is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: DELETE // defaults can be user

 PERIODICITY

 TYPE: ONCE

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBD

 EXTERNALCONSTRAINTS // Defined by user

 From Subactivities

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Subactivities

 RESOURCEREQUESTS // Pre-defined for the type of activity

 From Subactivities

 COMPOSITION: COMPOSITE

 SUBACTIVITIES // Pre-defined or user can define them for activity templates

 ACTIVITY(NAME=A1, RESOURCEREQUESTS=CameraA,

 PARAMETERS(Target=Star X, Duration=5.0 MINUTES),

 ACTIVITY(NAME=A2, RESOURCEREQUESTS=CameraA,

 PARAMETERS=(Target=Star Y, Duration=7.6 MINUTES),

 EXTERNALCONSTRAINTS=ENDS BEFORE (START OF ACTIVITY A1 +

 SlewTime(CameraA FROM Star Y TO Star X))

 OR

 STARTS AFTER (END OF ACTIVITY A1 +

 SlewTime(CameraA FROM Star X TO Star Y)))

D. Observation based on ephemeris and spacecraft position

Astronomer M wants an observation when Mars and Venus are within 0.5 degrees from the point of view of the spacecraft and both planets are between 25 and 35 degrees from the nearest limb of the sun.

NEEDS WORK - do we need a position constraint type or can we just do parameters and functions

ACTIVITY

 ACTIVITYINFO

 NAME: MarsVenusObservation

 DESCRIPTION: "Constraint based on position."

 PURPOSE: "Observation of near conjunction"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: ASTRONOMERM // ASTRONOMERM is a user defined the the CpsUser list

 VISIBILITY: OWNER // Defaults can be used

 PERMISSIONS: NONE // defaults can be used

 PERIODICITY

 TYPE=ONCE

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBD

 EXTERNALCONSTRAINTS - Schedule this activity when:

 CameraA.POV WITHIN 0.5 DEGREES OF Mars

 AND

 CameraA.POV WITHIN 0.5 DEGREES OF Venus

 AND

 Mars WITHIN 25 DEGREES and 35 DEGREES of SunEdge

 AND

 Venus WITHIN 25 DEGREES and 35 DEGREES of SunEdge

 INTERNALCONSTRAINTS

 From Resources

 RESOURCEREQUESTS // Pre-defined for the type of activity

 Instrument: CameraA (Exposure=10 MINUTES, Filter=UV)

 COMPOSITION: ATOMIC

E. Earth observations
Scientist M needs an image of a certain location on Earth with three different settings of the instrument. The image must be taken during civil twilight at that location. NEEDS WORK-What is being requested- one image or 3 images of one location

ACTIVITY

 ACTIVITYINFO

 NAME: MountainView

 DESCRIPTION: "Three filter image"

 PURPOSE: "Observation of variability in star clusters"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: ACOHORT // ACOHORT is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: DELETE // defaults can be user

 PERIODICITY

 TYPE: MULTIPLE

 INTERVAL: 30 DAYS

 REPEAT: 5

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBD

 EXTERNALCONSTRAINTS // Defined by user

 From Subactivities

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Subactivities

 RESOURCEREQUESTS // Pre-defined for the type of activity

 From Subactivities

 COMPOSITION: COMPOSITE

 SUBACTIVITIES // Pre-defined or user can define them for activity templates

 FiveMinuteMeasurement

F. Best use of guaranteed time block

Scientist J designed an instrument on the observatory. He has been guaranteed a six hour block of time on a monthly basis. He has several areas of interest and needs help from the system to decide which of these interests will be better served from the expected position of observatory on a particular future date.

G. Science operations around critical maneuvering

The orbital dynamics team needs to monitor and possibly make trajectory corrections during a flyby of an asteroid. Scientist O wants to schedule as much observation of the asteroid as possible during this flyby while not interfering with the maneuvering.

ACTIVITY

 ACTIVITYINFO

 NAME: AsteroidFlyby

 DESCRIPTION: "Observe during maneuver."

 PURPOSE: "Surface imaging"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: SCIENTISTO // SCIENTISTO is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: INTERRUPTABLE // activity can be interrupted and resumed

 PERIODICITY

 TYPE: ONCE

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBA

 EXTERNALCONSTRAINTS - Activity must be scheduled to:

 START AFTER Spacecraft.Range(AsteriodA) LESS THAN 3000 METERS

 AND

 END AFTER Spacecraft.Range(AsteriodA) GREATER THAN 4000 METERS

 AND

 Duration GREATER THAN 1 MINUTE

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Resources

 RESOURCEREQUESTS // Pre-defined for the type of activity

 Instrument: CameraA()

 COMPOSITION: ATOMIC

Maximize specific contact
On a certain date in the future, a solar-observing spacecraft is scheduled for a 5 hour contact through the Deep Space Network. The science team wants to download as much recorder data as possible during this time, allowing for commanding and telemetry monitoring as needed.

Standing orders
Whenever spacecraft Really Advanced Explorer (RAE) is in communications contact and either or both of the communications links (high speed and low speed) are not otherwise required, the link should be used to downlink data from the recorder.

Specific future planning
The attitude control team wants to schedule a maneuver for 12July1999 at 16:00:32.024 and the maneuver is expected to take 2 minutes and 3.120 seconds.

NEEDS MORE WORK

ACTIVITY

 ACTIVITYINFO

 NAME: AttitudeManeuver1

 DESCRIPTION: "Attitude maneuver: Thruster A and B; start angle 180, stop angle 270"

 PURPOSE: "Antenna re-acquistion"

 USAGE: OPERATIONS

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 3

 REQUESTER: SALLY // SALLY is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: NONE

 PERIODICITY

 TYPE: ONCE

 PARAMETERS // pre-defined for the type of activity, values provided by user

 DeltaTime Duration=TBA

 INTERNALCONSTRAINTS // Defined by user

 START AFTER 12July1999 16:00:32.024 GMT

 Duration EQUALS 02:03.120

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Resources

 RESOURCEREQUESTS // Pre-defined for the type of activity

 ThrusterA()

 ThrusterB()

 COMPOSITION: ATOMIC

Specific resource allocation
A daylight image of a forest fire in Indonesia is needed ASAP. It must be downlinked to a ground station in the Marshall Islands which only supports low X band. The Planning/Scheduling system should give this a high priority and should pick the appropriate transponder and antenna combination. (It is assumed that a transponder can be connected to any of several antennas but not all of the antennas and that an antenna can be connected to any of several transponders but not all of the transponders.)

ACTIVITY

 ACTIVITYINFO

 NAME: AttitudeManeuver1

 DESCRIPTION: "Attitude maneuver: Thruster A and B; start angle 180, stop angle 270"

 PURPOSE: "Antenna re-acquistion"

 USAGE: OPERATIONS

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 3

 REQUESTER: SALLY // SALLY is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: NONE

 PERIODICITY

 TYPE: ONCE

 PARAMETERS // pre-defined for this type of activity; values will be provided by user

 DeltaTime Duration = TBS

 EXTERNALCONSTRAINTS // Defined by user

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Resources

 RESOURCEREQUESTS // Pre-defined for the type of activity

 ThrusterA()

 ThrusterB()

 COMPOSITION: ATOMIC

H. Simultaneous observations

An astronomer wants to make simultaneous observations of the Crab Nebula using the X-ray detector on spacecraft Space Eye 3 and the Gamma ray detector on spacecraft Space Eye 4.

ACTIVITY

 ACTIVITYINFO

 NAME: CrabNebula2

 DESCRIPTION: "Observe Crab Nebula using X-ray and Gamma ray"

 PURPOSE: "Doctoral thesis data"

 USAGE: SCIENCE

 START TIME: TBS END TIME: TBS

 FIDELITYLEVEL: 0

 REQUESTER: GRAD // GRAD is a user defined the the CpsUser list

 VISIBILITY: OWNER, GROUP // Defaults can be used

 PERMISSIONS: NONE

 PERIODICITY

 TYPE: ONCE

 PARAMETERS // pre-defined for this type of activity; values will be provided by user

 DeltaTime Duration = TBS

 EXTERNALCONSTRAINTS // Defined by user

 START AFTER 10/16/1999 12:00:00 GMT

 INTERNALCONSTRAINTS // Pre-defined for the type of activity

 From Subactivities

 RESOURCEREQUESTS // Pre-defined for the type of activity

 From Subactivites

 COMPOSITION: COMPOSITE

 SUBACTIVITIES:

 SpaceEye2:Point XrayDetector AT CrabNebula

 SpaceEye3:Point GammaRayDetector AT CrabNebula

 SpaceEye2:Record XrayData FOR 15 MINUTES

 WHEN FOV OF XRayDetector ON SpaceEye3 IS POINTED AT CrabNebula

 AND

 FOV OF GammaRayDetector ON SpaceEye4 IS POINTED AT CrabNebula

 SpaceEye3:Record GammaRayData FOR 15 MINUTES

 WHEN FOV OF XRayDetector ON SpaceEye3 IS POINTED AT CrabNebula

 AND

 FOV OF GammaRayDetector ON SpaceEye4 IS POINTED AT CrabNebula

Appendix B: Design Choices

During the design and development of the ComPASS Plan Language, frequently, certain ideas were floated around for analysis and discussion by the ComPASS team. At times, alternate ways were considered to determine the most useful and practical approach for increasing adaptability and usability of the Plan Language. Some of the more significant design choices are mentioned in the sections below.

· Selecting Schedules with "Conflicts" for Planning of Next Level

It is logical to assume that a schedule at any fidelity level should be iterated until all conflicts are removed from the Activities, before selecting it as the input plan for the next fidelity level. However, this would result in the unnecessary rejection of many activities, since:

· Low fidelity and LongRange planning/scheduling operations are based upon simplified or approximated resource usage profiles.

· Optimization is being performed at each level by culling Activities with conflicts at that level.

However, by allowing certain types of conflicts to be acceptable in a schedule, the actual evaluation and rejection of the corresponding Activities may be deferred to a later stage in the scheduling cycle. Note that the types of acceptable conflicts are fidelity level and time-range dependent, and should be parameterized or provided to the scheduler as options.

· Specification of Cross-Fidelity Decomposition for an Activity
When a Fidelity Level n schedule is used as a Level n+1 Plan in ComPASS, the Planner needs to resolve how each Atomic Activity at Level n decomposes to its sub-activities at the next level. One way of making this information available to the Planner is by specifying it in the Atomic Activity's Template, in a completely symmetrical manner to a Composite Activity's decomposition specification. However, this approach was rejected as a mandatory way, since the best way of activity decomposition cannot always be determined statically; and different planners, specially reasoning-based planners, may arrive at the results in various different ways.

Therefore, whether or not to specify the cross-fidelity decomposition of an Activity in its template is to be determined for each system and each fidelity level, in accordance with the functionalities provided by its chosen Planners.

· Maintenance of the Resource Timelines

There was considerable debate and discussions in determining where and how the Resource Timelines be maintained in a ComPASS scheduling environment. Although, a simple approach would have been to do it in the Scheduler (who, anyway, queries the Model Mediator for resource usage prediction), that was found to be unsatisfactory in two different ways:

· In an environment where the Model Mediator is a separately running process from the Scheduler, the amount of data to be communicated between the two modules, and their conversion from global to native representations and vice versa, would be too expensive in terms of performance.

· It might need additional work to integrate this capability into pre-built schedulers used in the ComPASS system.

Thus, Resource Timelines are built and maintained by the ComPASS-developed Model Mediator object. A number of query capabilities are available, as public methods of the Model Mediator and Resource Timeline objects, to meet the needs of a scheduler.

· Use of Environmental Constraints

The scheduling of an Activity may be constrained due to the scheduling of other Activities, available resources, and factors related to the execution environment of the Activity (See Section 3.3.3). Most of the environmental constraints, nevertheless, are related to the spacecraft itself, and could have been handled as resource constraints, since the spacecraft is regarded as a global resource for modeling purpose. However, this approach was discarded, and a special Environmental Constraint class was developed for such constraints, due to the following reasons:

· Constraints, external to the spacecraft, may exist for a system. (Example: Cloud cover specification), and cannot be expressed

· From user's perspective, constraints such as schedule this observation when the sun angle is less than 5 degrees" do not appear to be resource related.

Appendix C - Future Enhancements to the Plan Language

This section will present a list of features that may be added to the ComPASS Plan Language as future enhancements, to accommodate specification of more refined and complex user plans, as well as to support reactive scheduling based upon external observations and system models.

These enhancement features will be added after more domain-specific experience is gained by the ComPASS development Team.

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

03/31/99
DRAFT
9
1
6
03/31/99
DRAFT

[image: image19.wmf]- Status at stack

level n

- StatusList

from stack level

n+1

- Status 1 at stack

level n+1

- StatusList from

stack level n+2

Status 2 at stack

level n+1

StatusList from

stack level n+2

-

Status Code

-

Associated Message

_984294967.doc

COVE

ComPASS Model Language Interface

Model Native Interface

Planner/Scheduler Native Interface

ComPASS Plan Language Interface

Legend:

Models

Model Mediator

Planner/

Scheduler

Plan Mediator

ComPASS client

Planning

Database

_984300953.doc

Spacecraft Models

Science Planner

Plan Database

Mission Planner

Client Interface

Client Interface

Client Interface

Client Interface

Client Interface

Client Interface

Orbital Models

_984387195.doc

Schedule

Status

Plan

ParentPlan

Activity

_984387515.doc

MasterPlan

DecomposedPlan

Plan

_984321138.doc

Saved ResourceContext

Activity Start

Legend:

Updates

to Schedule

Time

Initial Schedule

_984383428.doc

_984319784.doc

[image: image1.wmf]Selected

Plan

Schedule

(

conflicts

)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(

no conflicts

)

Selected

Plan

Schedule

(

conflicts

)

Level n

Level

n+1

Schedule

(

conflicts

)

Schedule

(no conflicts

)

Level n+2

Problem

 at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

Planner

Scheduler

_983687014.doc

[image: image1.bmp][image: image2.bmp]

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984301156.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984301842.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984319276.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Scheduler

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

Planner

(no conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984319658.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Scheduler

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

Planner

(no conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984301625.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_983702712.doc

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_983686160.doc

[image: image1.bmp][image: image2.bmp]

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_983686913.doc

[image: image1.bmp][image: image2.bmp]

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_983685031.doc

[image: image1.bmp][image: image2.bmp]

Selected

Plan

Schedule

(conflicts)

Schedule

(no conflicts)

conflicts)

Schedule

 (

conflicts

)

Schedule

(no conflicts)

Selected

Plan

Schedule

(conflicts)

Level n

Level

n+1

Schedule

(conflicts)

Schedule

(no

conflicts)

Level n+2

Problem at Level n

Solutions

at Level n

Problem at Level n+1

Decomposition

information

Decomposition

information

_984297742.doc

Plan

Constraint

Planned

Activity

Activity Template

Resource Request

Status

Reporter

Scheduled Activity

Schedule

ResourceState Vector

Conflict

Legend:

Unscheduled

Activity

Utility object

_984298034.doc

Status Code

Associated Message

Status 2 at stack level n+1

StatusList from stack level n+2

- Status 1 at stack level n+1

- StatusList from stack level n+2

- Status at stack level n

- StatusList from stack level n+1

_984295588.doc

Constraint

Temporal

Time

Spatial

Functional

ContainedBy

Relative

State

TransitionRelation

Absolute

Activity Constraint

AbsoluteTime

Relative

Functional

Absolute

Relationship

Parametric

StateRelation

ValueRelation

Environmental Constraint

Resource Constraint

_984293515.doc

Activity

Periodic Activity

Composite Activity

Atomic Activity

Planned Activity

Activity Template

Scheduled Activity

_984294905.doc

A

B

 A is input to B

 A contains (owns) B

A

A

A

B

 A contains a reference to B

 A has a collection of B

B

 A is the super class of B

A

B

B

_983860013.doc

ResourceRequests

Internal Constraints

Sub-activities

Parent Activity

Activity Template

Parent Plan

Planned Activity

External Constraints

Parameters

User

Information

_983883275.doc

ScheduledResource

Constraint

Constraint Violation

Conflict

Unscheduled

Activity

Resource

StateVector

Session

Context

Schedule

Statistics

Planned

Activity

Scheduled

Activity

ParentPlan

Schedule

_983370586.doc
[image: image1.bmp][image: image2.bmp]

Planner

ComPASS PersistentStore

Scheduler

Mediator

ComPASS Plan

P/S Native Database

Representation

Planner

Representation

ComPASS

n

2

1

Client Plan

Schedules

(Atomic)

Conflicts

Scheduled

Schedules

Decomposed Plan

Atomic Activities

Planning

Level 0

2

1

Client Plan

n

GUI Tools

n

2

1

Client Goals

Activities

